7

Graph Summaries

Graphs are a ubiquitous model for complex networks, with applica-
tions spanning biology, social network analysis, route planning, and
operations research. As the data represented in these applications in-
creases in size, so do the corresponding graphs. This chapter describes
summaries that apply to graphs. A graph G is defined by its vertex set
V and its edge set E. We assume that V is known, while the edges E can
vary. For simplicity, we consider only simple graphs, that is, graphs
which are undirected, do not have edge weights, and do not have self-
loops.

The graph summaries that we describe tend to have the property that
their size is at least proportional to |V|, the number of vertices. Although
this quantity can still be offputtingly large in many applications, it is the
case that there are often hard lower bounds which mean that no sum-
mary can exist with size that is asymptotically smaller than |V|. Lower
bound techniques and some lower bounds for graph problems are dis-
cussed in Chapter 10.4.

Summaries differ, depending on what kinds of updates are allowed.
Some problems which are straightforward when edges are only added
to the graph (such as keeping track of the connected components of the
graph) become more complex when edges can be added and removed.

7.1 Graph Sketches

Brief Summary. The Graph Sketch summary allows the connected com-
ponents of a graph to be found. It makes clever use of the {,-sampler
summary (Section 3.9) applied to inputs derived from graphs. The al-
gorithm stores a number of {y-sampler summaries for each node. If the

200

7.1 Graph Sketches 201

graph consists of only edge arrivals, then the problem is much easier:
we can keep track of which nodes are in which components, and up-
date this assignment as more information arrives. However, when there
can be edge departures as well as arrivals, this simple approach breaks
down, and a more involved solution is needed.

The idea behind the Graph Sketch summary is to allow a basic algo-
rithm for connectivity to be simulated. The basic algorithm is to start
with each node in a component of its own, then repeatedly find edges
from the (current) edge set that connect two different components, and
merge these components. If this is performed for all edges in parallel,
then a small number of iterations is needed before the components have
been found. The insight behind the Graph Sketch is to define an encod-
ing of the graph structure to allow the summary to be built and for this
algorithm outline to be applied.

Algorithm 7.1: Graph Sketch: INITIALIZE (r)

1 for j«— 1tordo
2 fori— ltondo
3 L S «to-sampler.INITIALIZE (n, 1/n%);

Operations on the summary. To INITIALIZE a Graph Sketch, we create
a set of r = logn £y-sampler summaries for each of the n nodes.

Algorithm 7.2: Graph Sketch: UPDATE ((u, v))

1 a < min(u,v);

2 b« max(u,v);

3 for j — 1tordo

4 S UPDATE (a*n+ b, +1);
5 L Sp ;.- UPDATE (a*n+b,-1);

To UPDATE the Graph Sketch with a new edge (u, v), we first encode
it as an update to the fy-sampler summaries for node u and node v.
We can assume that u and v are both represented as integers, and we
assume that u < v (if not, interchange the roles of # and v). We also
assume that we can treat the edge (», v) as an item that can be processed
by the ¢;-sampler summaries (for concreteness, we can think of (u, v) as
being encoded by the integer min(u, v) * n + max(u, v)).

We UPDATE the {p-sampler summaries associated with node u with
the item (u, v) and a weight update of +1. We also UPDATE the ¢y-sampler
summaries associated with node v with the item (u, v) and a weight up-

202 Graph Summaries

date of —1. Note that it is also straightforward to process edge deletions
by swapping the +1 and —1 weights in the UPDATE procedure.

Algorithm 7.3: Graph Sketch: QUERY ()

1 C«0;
2 fori < 1 tondo
3 Ci=1i};
4 C<Ccul{cy;
5 Ti =i,
6 for j «— 1tordo
7 forall C € C do
8 S « {y-sampler.INITIALIZE (n, 1/n?) ;
9 foralli € C do
10 | MERGE (S,S;));
11 (u,v) = S.QUERY () ;
12 forall w € Cr, do
13 T, < T,;
L /+ Update the component information */
14 CTM — CT,, U CT‘, ;
15 | C<C\{Cr};

16 return C;

The QUERY procedure is rather involved. We begin by placing each
node in a component of its own, with a unique label. We then repeat
the following procedure for r rounds. In round j, create a sketch for
each component by performing MERGE of the jth sketch of each of
the nodes in the component. We then query this sketch to sample an
edge. The crux of the process is that, because of the update procedure,
the edge sampled is guaranteed to be outgoing from the component (if
there are any such edges). This edge is used to combine the component
with another. At the end of the rounds, the current set of components
is returned as the set of connected components in the graph.

The pseudocode in Algorithm 7.3 introduces some extra notation to
describe this procedure. Lines 3 to 5 initialize this by creating n initial
components, Cj ... C,, and stores the set of components as C. For conve-
nience of reference, it also instantiates a map from nodes to component
identifiers, so that T, means that node u is part of component Cr,.

The main loop in the pseudocode is over component C in round ;.
The sketch § is built as the merger of all the sketches of nodes i in

7.1 Graph Sketches 203

component C (line 10), from which an outgoing edge is found (line 11).
Based on this edge (u,v), we assign all the nodes in the component of
v to be in the component of u (line 13). We then combine the compo-
nents of u and v (line 14), and remove the component of v from the set
of components C.

Example. For an example, we show a small graph, and study the way
that its edges are encoded before being placed into the sketch. Consider

the graph below:

C

a d —— e

b

The initial encoding of the edges can be described in the following
table:

(ab) (ac) (ad) (ae) (bec) (bd) (be) (cd) (ce) (de)
a +1 +1
b -1 +1 +1
C -1 -1 +1
d -1 -1 +1
e -1

Each node is associated with one row of the table that encodes its
neighbors. Here, we index the rows by the identity of the edges (in the
pseudocode description, we convert these to use a canonical integer
representation). Node b is linked to three neighbors, a, ¢, and d. Since
a comes before b in the (alphabetic) ordering of the node, edge (a, b) is
represented by a —1 in the table, while edges (b, ¢) and (b, d) are encoded
as +1 in b’s row in the table. Observe that each edge is thus represented
twice, with a +1 for one occurrence and a —1 for the other. Note that
the table itself is not stored explicitly; rather, the summary keeps an
instance of an £y-sampler for each row.

Now suppose that after one iteration of the algorithm, we have cho-
sen to merge nodes a and ¢ into one cluster, and b, d, and e into another.
We now obtain the resulting table for the clusters:

204 Graph Summaries
(ab) (ac) (ad) (ae) (be) (bd) (be) (cd) (ce) (de)

{a, ¢} +1 0 -1 +1
{b,de} -1 1 0 -1 0
The row {a, c} in the new table is the result of summing the rows a
and ¢ from the first table (in the summary, we have obtain an £y-sampler
of this sum). Here, we write 0 to denote where a +1 and —1 have co-
occurred and annihilated each other. Similarly, the row {b, d, e} is the
sum of the three rows b, d, e from the first table. Observe that the only
edges which remain in this representation are those that cross between
the two components: (a, b), (b, c) and (c, d).

Further Discussion. The correctness of the algorithm depends crit-
ically on the encoding of edges, and the properties of the £y,-sampler
structure. Consider a collection of nodes C and their correspond-
ing merged ¢y-sampler structure. Observe that if an edge (u, v) con-
nects two nodes u € C,v € C then the contribution of this edge
in the sketch is exactly 0: it is represented with +1 in the sketch
of u and —1 in the sketch of v, so when these are merged together,
the net contribution is zero. Therefore, this ‘internal” edge cannot
be sampled from the merged sketch. Hence, only ‘outgoing’ edges
(where one node is in C and the other is not in C) can be drawn
from the sketch.

The rest of the analysis then reduces to analyzing the algorithm
that picks one outgoing edge from each component in each round,
and merges the pairs of components. The number of components
must at least halve in every round (excluding any connected com-
ponents which have already been fully discovered), hence the num-
ber of rounds is at most logn since we start with n components
(each containing a single node).

It remains to argue that, over all the accesses to sketches, the
chance of failing to draw a sample from any is very low. From the
above analysis, it follows that over the rounds we make no more
than n + n/2 + n/4 + ... < 2n calls to the QUERY routine for an &,-
sampler structure. If we set the failure probability of each of these
to be at most 1/n?, then the chance that there is any failure across
all the whole operation of the Graph Sketch structure is still very
small, 2/n, by appealing to the union bound (Fact 1.6).

It is important for the correctness of the algorithm that indepen-

7.2 Spanners 205

dent sketches (using different random hash functions) are used in
each round. This ensures that we can correctly analyze the proba-
bility of success. For intuition, observe that if it were possible to use
a single set of £y-sampler structures (one for each node), then we
could use them to extract incident edges on each node, delete these
edges from the summaries, and repeat until we have found all
edges in the graph. That would allow the recovery of O(n*) edges
from n summaries of small size — intuitively this should be impos-
sible! Indeed, this intuition can be formalized, and so we cannot
hope to “recycle” the summaries so aggressively.

History and Background. The idea of graph sketches was introduced
by Ahn, Guha and McGregor in [7]. They used variations of this idea
to also establish k-connectivity of graphs (where the graph remains
connected even up to the removal of k nodes) and bipartiteness (by
expressing bipartiteness in terms of the number of connected compo-
nents in a derived graph). However, since we need to keep multiple
to-sampler summaries for all n nodes, each of which is typically kilo-
bytes in size [61], the space cost for this summary is quite large.

Similar summary ideas have been used for the problem of dynamic
graph connectivity in poly-logarithmic time [147]. Here, it is required
to maintain an explicit representation of the connected components ca-
pable of answering whether a pair of nodes u and v are in the same
component quickly.

7.2 Spanners

Brief Summary. A k-spanner of a graph G is a subgraph H (both de-
fined over vertices V) so that for any pair of nodes u and v

d(u,v) < dy(u,v) < kdg(u,v).

That is, every distance in G is stretched by a factor of at most k in its
Spanner. Spanners can be relatively easy to build, but come with some
limitations. The first is that the values of k tend to be moderate con-
stants, say 3 or 5 — whereas, in many cases we would prefer that k be
close to 1 to preserve distances as much as possible. However, it is only
with these larger k values that we can guarantee that the Spanner will
be smaller than the original graph G. The second is that the Spanner
we describe does not have a MERGE operation — they can only be built

206 Graph Summaries

incrementally by a sequence of UPDATE operations. This restricts their
applicability.

Algorithm 7.4: Spanner: INITIALIZE (V, k)

1 H« (V,0);
2 Record the value of k ;

Algorithm 7.5: Spanner: UPDATE ((u, v))

1 if dy(u,v) > k then
2 L E — EU{(u,v)};

Operations on the summary. To INITIALIZE a new Spanner based on
stretch parameter k, we create an empty graph on the vertex set V,
and store k. To UPDATE a Spanner with a new edge (u, v), we consider
whether it is necessary to add the edge. If the distance between u and
v in the current version of the stored graph H is at most the stretch pa-
rameter k, then we do not need to store it. Otherwise, we do need to
retain this edge to keep the promise, and so it is added to H. This is
shown in Algorithm 7.5.

The queries that the spanner supports are distance and reachability
queries. Given a pair of nodes (u,v), we approximate their distance in
the input graph G by returning their distance in the Spanner graph H,
as dy(u, v).

Example. Consider the following graph, processed by the algorithm
with parameter k = 3.

Suppose we have processed all edges up to the dashed edge (c, e).
All edges up to this point are retained in the summary, as none can
be dropped without disconnecting the graph. For edge (c, ¢), the graph

7.2 Spanners 207

distance between nodes ¢ and e is 3 — via ¢, b, d, e. So the edge (c, e) is
not retained in the summary.

Now any distance in the graph is preserved up to a factor of (at most)
3. The distance between c and f is 2 in the original graph, but is 4 in the
spanner, since the direct edge (c, e) is replaced by the path ¢, b,d, e.

Further Discussion. There are two steps to arguing that H pro-
vides a spanner of bounded size. First, we argue that the distances
in H only stretch by a factor of k. Consider some path in G, which is
a sequence of edges. In the worst case, none of these edges are re-
tained in H. But if this is the case, then we know that for each edge
that was discarded, there is a path in H of k edges. So the path in G
is replaced by one at most k times longer.

The second part is to argue that the size of H does not grow too
large. For this, we rely on some facts from the area of “extremal
graph theory”, regarding the graphs which lack some particular
subgraph [31]. By construction, graph H has no cycles of size k + 1
(or smaller) — since the last edge to arrive in the cycle would be
dropped by the summary construction algorithm. Such graphs can
have at most O(n'*#1) edges. For moderate values of k, say k = 3,
we get guarantees that the size of H is certain to be much smaller
than the theoretical maximum of n? possible edges in G.

Implementation Issues. A key implementation requirement is to be
able to find dy(u,v) online as new edges are added to the Spanner. Ef-
ficient algorithms and data structures for this problem are beyond the
scope of this volume, but this consideration has played into other algo-
rithms for Spanner construction.

History and Background. The simple algorithm for Spanner construc-
tion described above is due to Feigenbaum et al. [98]. There has been
much subsequent work on the problem of maintaining Spanners as
edges are added. In particular, Elkin shows how to improve the time
to process each edge with a randomized algorithm [93].

208 Graph Summaries

7.3 Properties of Degree Distributions via Frequency
Moments

The degree distribution of a graph describes the number of nodes that
have a particular degree. For many large graphs of interest (represent-
ing social networks, patterns of communication etc.), the degree distri-
bution can be approximately described by a small number of param-
eters. For example, in many cases, the distribution is heavily skewed:
a small number of nodes have high degree, while the majority have
very low degree (the long tail). Such behavior is often modeled by a
power-law distribution: the fraction of nodes with degree dis taken to
be proportional to d7%, for a parameter z typically in the range 0.5 to 2.

Since the degree distribution can be captured as a vector, indexed by
node identifiers, it is natural to apply many of the summaries seen pre-
viously to describe its properties. For example, we might naturally find
the identifiers of the nodes with highest degree using summaries like
SpaceSaving or Count-Min Sketch (Chapter 3). Improved results are
possible by mixing different sampling approaches: a KMV sample of
the nodes to describe the behavior of the “head” of the frequency dis-
tribution, and a uniform RandomSample of the nodes to describe the
behavior of the “tail” [205]. Tracking the sum of squares of degrees, i.e.,
F, via AMS Sketch, may allow the estimation of parameters of models
such as a power-law distribution.

These analyses assume that the graph is presented so that each edge
is observed only once. In some settings, we may see each edge multiple
times (e.g., seeing multiple emails between a pair of communicating
parties), but only wish to count it once. We can track the total number of
distinct edges seen via HLL. For more complex queries, we can combine
various of our summaries. For example, we can estimate the underlying
degree of each node u, given by the number of distinct neighbors v of u
seen among the edges. This can be done by nesting a distinct counting
summary (e.g., HLL) within a frequent items structure (e.g., Count-Min
Sketch). This approach is discussed at more length in Section 9.4.3.

7.4 Triangle Counting via Frequency Moments

Many analyses of graph-structured data rely on the notion of the trian-
gle: a complete subgraph on three nodes. Detecting and counting such
local structure can be hard when the graph to be analyzed is large, and

7.4 Triangle Counting via Frequency Moments 209

possibly broken into multiple distributed pieces. Nevertheless, there
has been a large amount of effort directed at problems to do with tri-
angles: sampling a representative triangle, approximately counting the
number of triangles, and so on.

Here we describe one method for estimating the number of triangles
in a graph based on summaries described earlier. Given a graph G =
(V, E), each triangle is defined by a triple (u,v,w) € V3 such that (u,v) €
E, (v,w) € E, and (u,w) € E. We proceed by converting each edge into
a list of the possible triangles that it can be a member of: from edge
(u,v), we generate (u,v,w) for all w € V. We then consider a vector x
that encodes the total number of occurrences of each possible triangle:
Xquv.w) counts the number of times that possible triangle (u, v, w) is listed.

If each edge is seen exactly once in the description of G, then the
number of triangles in G is the number of entries that are 3 in the vector
x. A value of 3 can arise at index (u,v,w) only if all three edges (u,v),
(v,w) and (u, w) are seen in the input. Tracking x exactly will require a
lot of storage (O(n®) space to describe all possible triangles), and so we
will use summaries. We have summaries that can approximate F»(x),
ie., Y; xl?, such as the AMS Sketch. We can also approximate Fy(x), i.e.,
Y0 1, such as the HLL. Lastly, we can compute F(x) directly, as the
sum of all entries in x.

Since the possible values in x are restricted to {0, 1,2, 3}, we can use
an algebraic trick to count only the entries that are 3. Observe that the
polynomial p(y) = 1 — 1.5y + 0.5y* behaves as follows

pH=0 p2)=0 " pB)=1

Now observe that P(x) = Fo(x) — 1.5F(x) + 0.5F,(x) is equivalent to
counting 0 for each zero entry of x, and applying polynomial p to each
non-zero entry of x. Consequently P(x) counts the number of triangles
in G exactly.

By using summaries, we are able to approximate P(x). We obtain
an error of e(Fy(x) + F»(x)) in our estimate — note that we can main-
tain F(x) exactly with a counter. There’s no immediate guarantee that
the error term e(Fo(x) + F2(x)) is related to the number of triangles T,
and indeed, one can create graphs which have no triangles, but for
which Fy(x) and F»(x) are quite large. However, we can easily show that
Fo(x) < Fi(x) and F»>(x) < 3F;(x), and that F(x) < mn, where m = |E| and
n = |V|. Consequently, we obtain an error guarantee of at most 4emn.

A limitation of this approach is that the step of generating all possi-

210 Graph Summaries

ble triangles for edge (u,v) to feed into summaries would require O(n)
UPDATE operations if done explicitly. To make this efficient, we must
adopt summaries for Fy and F, that are efficient to update when pre-
sented with an implicit list of updates. That is, edge (u, v) implies a list
of edges (u, v, w) for all w € V. Such summaries are called list-efficient.

History and Background. This approach to triangle counting is due
to Bar-Yossef, Kumar and Sivakumar [19]. This work introduced list-
efficient summaries for Fy. They adapt prior work of Gilbert et al. on
estimating F, to be list-efficient for the lists of triangles that are gener-
ated [112]. Subsequent work has aimed to provide more efficient list-
efficient summaries [194, 216]. Other approaches to counting triangles
are based on sampling and counting, and so tend to imply summaries
that can perform UPDATE but not MERGE operations (i.e., they process
streams of edges). Some examples include the work of Jowhari and Gh-
odsi [143], Buriol et al. [42], Pavan et al. [193],'and most recently McGre-
gor et al. [173].

7.5 All-distances Graph Sketch

The all-distances graph sketch (ADS) keeps information about the
neighborhood of every node v in a graph G. It allows us to ap-
proximate functions based on the number of nodes at different dis-
tances from v. For example, a basic question would be “how many
nodes are within distance d from node v?”. More generally, it can
also answer questions such as “how many red nodes are within
distance d from node v” (if each node has a different color), or
“compute the sum of the reciprocals of the distances of all nodes
from v”. Formally, we can compute arbitrary functions of the form
> f(u,d(u,v)). The sum is over all nodes u in the same connected
component as v, and allows the function f to specify a value based
on the information of node u (e.g., color) and the graph distance
between u and v, given as d(u, v).

The summary can be instantiated based on a number of differ-
ent summaries for counting distinct items, such as KMV and HLL.
For concreteness, we describe a version that builds on KMV (Sec-
tion 2.5). Recall that the KMV structure keeps a summary of a set

7.4 Triangle Counting via Frequency Moments 211

by applying a hash function % to each member of the set, and re-
taining only the k elements which achieve the k lowest hash val-
ues. The ADS extends KMV by keeping additional information on
graph distances as well. Assume for now that we have convenient
access to d(u,v) for all nodes u and v in the graph. For simplicity,
let us assume that all distances are distinct (this can be achieved by
breaking ties based on node ids, for example). Now we keep node
u in the ADS structure for v if its hash value (under hash function
h) is among the k smallest for all nodes w whose distance from v is
at most d(u, v).

Algorithm 7.6: ADS:INITIALIZE (v,k)

1 Pick hash function 4, and store k;
2 Initialize list L, = 0;

The INITIALIZE operation for a node v (Algorithm 7.6) is almost
identical to that for KMV: it picks a hash function # mapping onto
arange | ...R, and creates an empty list that will hold information
on nodes.

Algorithm 7.7: ADS: UPDATE (u, d(u, v))

1 ifu ¢ L, then

L, « L, U{(u,d(u,v), h(u))};

if [{w € L,|d(w,v) < d(u,v)}| > k then
X € arg Mmaxyer, dow.y)<dauy) HW) ;
Remove x from L, ;

a R W N

The UPDATE operation to add information about a node u to the
summary for node v (Algorithm 7.7) automatically inserts the new
node into the data structure for v. It then checks if the condition
on the number of nodes at distance at most d(u, v) is violated, and
if so, deletes the node within that distance with the maximal hash
value.

The consequence of this definition is to draw a sample (via the
randomly chosen hash function /) where the inclusion probability
for a node depends on its distance from v. The k closest nodes to
v are certain to be included. Nodes very far from v have a lower
chance to be included, essentially a k/n chance, when there are n
nodes in the (connected) graph G. For the node which has the ith
furthest distance from v, the chance that it is kept in the ADS is

212 Graph Summaries

min(1, k/i). Then, we can quickly see that the expected size of the
ADS is k + X7, k/i < klnn. That is, a moderate factor than the
O(k) size of a regular KMV summary.

To appreciate the power of the ADS, we first consider the query
to estimate the number of nodes whose distance is at most d from v.
In the ADS data structure, we extract all stored nodes that meet this
distance restriction. Note that, provided that in the full graph G
there are at least k such nodes, then we will recover at least k nodes
from the summary. This follows by definition of which nodes are
held in the summary. Furthermore, we can consider what would
have happened if we had built a KMV summary applied to only
those nodes which meet the distance restriction, using the same
hash function h. Then we would have retained at least k of the
nodes extracted from the ADS. That is, we have all the informa-
tion necessary in the ADS in order to extract a KMV summary of
this subset of the input. Consequently, we can apply the QUERY
procedure for KMV, which is based on the hash values of the re-
tained elements to estimate the cardinality of the set from which
they were drawn. This provides a (1 + €) guarantee for the number
of nodes within distance d, provided that k = O(1/ €?). In the case
when there are fewer than k nodes at distance d from v, then the
ADS is required to keep all of them, and so we obtain the exact
result.

Algorithm 7.8: ADS: QUERY (v, P,d)

1 Q« {uuelL,duv) <d};
2 if |Q| < k then

3 ‘ r=k

4 else

5 Vi < MaXyep h(W) ;
6 Lw—(k—l)*R/vk;

return r = |[{ulu € L,,d(u,v) < d, P(u) = true}|/|Q|

N

This approach forms the basis of answering more general queries.
For queries such as “how many red nodes are within distance d of
v”, we again extract all nodes in the ADS summary that are within
distance d. We use this to estimate the total number of nodes at
distance d. We then inspect the nodes extracted, and compute the
fraction that meet the predicate (colored red), and give our esti-
mate of the number as this fraction times the total number within

7.4 Triangle Counting via Frequency Moments 213

distance d. The error in this estimate is proportional to €|N;|, where
N, is the number of nodes within distance d. This follows by anal-
ogy with applying predicates to the KMV summary, discussed in
Section 2.5. This show in Algorithm 7.8, to apply predicate P and
distance bound d to the summary of node v, and estimate the num-
ber of nodes meeting this predicate within distance d from v.

For more general functions F(v) = Y, f(u,d(u,v)), we can pro-
ceed by (notionally) iterating over every node u in the graph. For
any given node, we can use the ADS to estimate its contribution to
the approximation of F(v). This is given by f(u, d(u, v)), scaled by
the estimate for the number of nodes within this distance. Observe
that for nodes w not stored in the ADS summary, we have a contri-
bution of 0 to the estimate. Therefore, it suffices to just iterate over
every node that is stored in ADS, and compute its contribution to
the estimate.

It remains to discuss how to build an ADS summary for nodes in
a graph without exhaustively computing the all-pairs shortest path
distances. Assume that we want to compute the ADS summary for
all nodes in G. We start by instantiating an empty summary for
each node. We fill each summary by creating a “self-referential”
entry for node v at distance 0 from itself. Then each node v can
follow a ‘gossip’ style algorithm: every time it hears about a new
node distance pair (u, d), it can test whether it should be included
in its current ADS (possibly evicting some pair that now no longer
meets the criterion for inclusion). If (u, d) is added to v's ADS, then
v can inform all its neighbors w about the new node, at distance
d + d(v,w). Note that a node v might hear about the same node u
through different paths. If so, v can ensure that it only retains infor-
mation about u with its shortest distance. It is possible to see that
this process will converge to the correct result, after a number of
“rounds” proportional to the diameter of the graph. It’s less imme-
diate how to bound the cost of this procedure, but we can observe
that we do not expect many nodes to propagate very far through
the graph, due to the definition of the ADS summary. The total
number of operations to insert nodes into ADS structures across
the whole graph can ultimately be bounded by the product of the
size of each structure times the number of edges, m, as O(kmlog n).

214 Graph Summaries

Example. We give a small example of the QUERY procedure for
ADS with k& = 3. Consider the following set of nodes, where for
each node we list its distance from the node v, and its hash value
(an integer in the range 1 to 20).

Nodeid Distance fromv Hash value

1 19
5
12
8
15
3
9
8 2

0 8 Q0 S
N OOl b= Wi

Then for k = 3 we would retain the set of nodes {a, b, ¢, d, f, h}.
We retain d since it has a lower hash value than a which has closer
distance. We omit e since there are already 3 nodes with lower hash
values at closer distance. Likewise, g is dropped since b, d and f
have lower hash values and smaller distances.

To estimate the number of nodes with distance 4 or less, we can
extract the k nodes in the ADS summary that form a KMV sum-
mary: that is, b, ¢, and d (a would be dropped from the KMV sum-
mary). Our estimate is given by (k — 1) * R/v; where R = 20 is the
range of the hash function and v; = 12 is the kth highest hash value
(see Algorithm 7.8 and discussion for the KMV QUERY operation in
Section 2.5). This gives the estimate of 3.33 elements, which is tol-
erably close to the true result of 4. Note that we could have made
more use of the information available, since we also have knowl-
edge of a and its hash value. This is discussed by Cohen [53], who
defines an improved estimator based on the “inverse probability”
of each node to be included in the summary.

History and Background. The central ideas for the ADS are due
to Cohen [52], who introduced the summary to estimate the num-
ber of nodes reachable from a node, and the size of the transitive
closure in directed graphs. Our presentation follows a later gener-
alization by Cohen [53] that goes on to consider different construc-
tions of the ADS and tight bounds on their estimation accuracy

7.4 Triangle Counting via Frequency Moments 215

based in the notion of “Historic Inverse Probability (HIP)” estima-
tors.

Yv
&

