
DRAFT
8

Summaries over Distributed Data

Big data is often distributed. This can be due to space concerns—a sin-
gle machine just cannot hold all the data, or efficiency concerns. Even
if the entire data set can be stored on one machine, it is often more effi-
cient to split it up into many pieces, and process them in parallel. The
UPDATE and MERGE algorithms that have been provided in the pre-
vious chapters serve this purpose well: For each piece, we repeatedly
UPDATE the summary with each individual data record, and then send
the resulting summary to a central entity, who can then perform MERGE

operations on all the summaries received.
In a distributed setting, communication is usually considered as the

most important measure of cost. The approach above incurs a commu-
nication cost of k × s, where s is the individual summary size and k is
the number of pieces. However, sometimes one can improve upon this
standard approach, reducing the communication cost significantly. In
this chapter, we will see a few important examples where this is the
case. For some other cases, like distinct count (Section 2.5 and 2.6) and
F2 estimation (Section 3.6), it is known that the approach of sharing
summaries is already optimal [229].

To make the presentation more precise, we adopt the following sim-
ple communication model, also called the flat model or the star network
in the literature. We assume that the whole data set is partitioned into
k pieces, each held by a node. There is a dedicated central node, or the
coordinator, who has a two-way communication channel with each of
the k nodes. These k nodes do not communicate to each other directly,
but they can pass messages via the coordinator if needed. Note that
algorithms designed in the flat model can usually be applied to more
general network topologies, with a communication cost that is h times
that in the flat model, where h is the diameter of the network. In some

216

DRAFT

8.1 Random Sampling over a Distributed Set 217

cases, more efficient algorithms are known for general network topolo-
gies than directly applying the flat model algorithms, and proper refer-
ences are provided in the History and Background section.

8.1 Random Sampling over a Distributed Set

Brief Summary. Recall from Section 2.2 that the goal of random sam-
pling is to draw a random sample of size s without replacement from a
set of n items. In the distributed setting, the whole set A is partitioned
into k subsets A1, . . . , Ak, each of size n1, . . . , nk, respectively. If we draw
a random sample of size s from each subset, and then MERGE them to-
gether using the algorithm in Section 2.2, the total communication cost
will be O(ks). Here, we describe an algorithm with communication cost
O(k + s).

Operations on the summary. The k nodes first send the sizes of their
subsets, i.e., n1, . . . , nk, to the coordinator. Then the idea is for the coor-
dinator to simulate the sampling process using only these counts, and
then retrieve the actual sampled items from the nodes. Specifically, the
coordinator first decides the number of sampled items from each node
using the following procedure. Let n = n1 + · · · + nk. For the first sam-
pled item, with probability ni/n, it should come from Ai. So with the
right probabilities, it selects an i from which the sample should come
from. Then it decrement ni by one, and repeat the process. After s steps,
the coordinator knows si, the number of sampled items it should re-
trieve from Ai for i = 1, . . . , k. Then it sends si to the i-th node, who then
returns a random sample of size si from Ai. Finally, the random sample
of the entire set is simply the union of the random samples returned
from the k nodes. The pseudocode is given in Algorithm 8.1.

Further Discussion. The communication cost of this algorithm is
clearly O(k + s). The O(k) part is due to the cost of communicating
the subset sizes n1, . . . , nk. If these are already known, e.g., when the
algorithm is repeatedly executed to draw random samples multi-
ple times, then the cost is only O(s). The correctness of the algo-
rithm can be easily established using the principle of deferred de-
cisions.

DRAFT

218 Summaries over Distributed Data

Algorithm 8.1: Random sampling over distributed data

1 foreach i do
2 Node i sends ni to Coordinator;

3 n← n1 + · · · nk;
4 si ← 0, i = 1, . . . , k;
5 for j← 1 to s do
6 Pick r uniformly from {1, . . . , n};
7 Find i such that

∑i−1
`=1 ni < r ≤

∑i
`=1 ni;

8 si ← si + 1;
9 ni ← ni − 1;

10 n← n − 1;

11 foreach i do
12 Coordinator sends si to node i;
13 S i ← a random sample of size si from Ai;
14 Node i sends S i to Coordinator;

15 Coordinator returns S = S 1 ∪ · · · ∪ S k;

8.2 Point Queries over Distributed Multisets

Brief Summary. In this section, we consider a multiset that is stored
in a distributed fashion. We assume that the items in the multiset are
drawn from a bounded universe [u] = {1, . . . , u}. The multiset is par-
titioned into k pieces, held by k distributed nodes. We denote the local
count of item i at node j by xi, j, and the global count of item i is yi =

∑
j xi, j.

Let n = ‖y‖1 =
∑

i yi. A point query for item i returns an approxima-
tion of yi. In Chapter 3, we have seen a number of summaries of size
O(1/ε) or O(1/ε log(1/δ)) that can answer point queries with additive
error εn. Here, δ is the probability that any yi is estimated with an error
greater than εn. Constructing such a summary for each piece and then
merging them together will lead to a communication cost of O(k/ε) or
O(k/ε log(1/δ)). Here we present an improved algorithm with commu-
nication cost O(

√
k/ε log(1/δ)) bits.

Operations on the summary. The algorithms described in this section
all return an unbiased estimator of yi for any given i, with variance
O((εn)2). By the Chebyshev inequality, this gives us an estimate with
additive εn error with a constant probability. If a higher success prob-
ability 1 − δ is desired, one can use the standard technique of running

DRAFT

8.2 Point Queries over Distributed Multisets 219

O(log(1/δ)) independent instances of the algorithm, and returning the
median estimate. We now describe a sequence of three increasingly
complicated sampling algorithms for the distributed point estimation
problem.

Uniform coin-flip sampling. A very simple algorithm is for each node to
sample each of its items with probability p = 1/(ε2n). If an item i has
local count xi, j at node j, it is treated as xi, j copies of i and each copy is
sampled by node j independently. All the sampled items are sent to the
coordinator. Then for a queried item i, we use the estimator Yi = Xi/p,
where Xi is the number of copies of item i received by the coordina-
tor. It follows that E[Yi] = yi and Var[Yi] = O((εn)2) (details presented
below). The expected communication cost of this simple algorithm is
pn = O(1/ε2). This method works well if k > 1/ε2. Otherwise, the fol-
lowing algorithm works better.

Importance sampling. The idea is still to use random sampling, but bias
the sampling probability so as to favor heavy items, i.e., those with
large local counts. The basic version of the algorithm is very simple.
Let g(x) = min{x

√
k/εn, 1} be the sampling function. We assume that the

common parameters n, k, ε are known to all nodes; otherwise we can
spend an extra O(k) communication cost to broadcast them. If an item i
has local count xi, j at node j, then the node with probability g(xi, j) sam-
ples this item and sends the item together with its local count xi, j to the
coordinator. Set Yi, j = xi, j if the coordinator receives the item-count pair
(i, xi, j) from node j, and Yi, j = 0 otherwise. Then for any given i, the
coordinator can estimate yi as (define 0

0 = 0)

Yi =
Yi,1

g(Yi,1)
+ · · · +

Yi,k

g(Yi,k)
. (8.1)

The full analysis shows that E[Yi] = yi and Var[Yi] = O((εn)2), and this
algorithm transmits a total of O(

√
k/ε) item-count pairs.

An advanced version of the importance sampling algorithm. One can be more
careful with the exact number of bits communicated. Let u be the size of
the universe where the items are drawn from. For example, if the items
are IPv6 addresses, then u = 2128. Note that an item thus needs O(log u)
bits to represent, and a count needs O(log n) bits, so the basic version of
the algorithm communicates O(

√
k/ε(log u + log n)) bits in total. A more

advanced version of the algorithm can reduce this cost to just O(
√

k/ε)
bits. The idea is to encode the sampled items into a BloomFilter. Recall
from Section 2.7 that a BloomFilter is a space-efficient encoding scheme

DRAFT

220 Summaries over Distributed Data

that compactly stores a set of items S . We recall its properties that are
needed for our purpose here. Given any item, the BloomFilter can tell
us whether this item is in S or not. It does not have false negatives,
but may have a false positive probability q for any queried item. More
precisely, if the queried item is in S , the answer is always “yes”; if it is
not in S , then with probability q it returns “yes” and with probability
1−q returns “no”. The false positive probability q can be made arbitrar-
ily small by using O(log(1/q)) bits per item, and the value of q can be
computed as (2.6). Thus the BloomFilter uses O(n log(1/q)) bits to store
a total of n items, regardless of the size of the universe.

We now describe the advanced version of the algorithm. First write
each xi, j in a canonical form as

xi, j = ai, j
εn
√

k
+ bi, j, (8.2)

where ai, j and bi, j are both non-negative integers such that ai, j ≤
√

k
ε

and
bi, j <

εn
√

k
. We assume εn

√
k

is an integer. Note that given these constraints,
there is a unique way of expressing xi, j in the form above. Then we have

yi =
εn
√

k

k∑
j=1

ai, j +

k∑
j=1

bi, j. (8.3)

Given a point query i, we will estimate the two terms of (8.3) separately.

The second term is easier to deal with. As in the basic version of the
algorithm, the nodes sample each bi, j with probability g(bi, j), and then
estimate the second term of (8.3) similarly as before

Bi =
Bi,1

g(Bi,1)
+ · · · +

Bi,k

g(Bi,k)
,

where Bi, j = bi, j if bi, j is sampled by node j, and 0 otherwise. The ob-
servation is that, since g(x) is a linear function when x ≤ εn/

√
k, Bi, j

g(Bi, j)
is

either 0 or εn/
√

k. Thus, the nodes do not need to send out the values of
bi, j’s at all, they only need to inform the coordinator which items have
had their bi, j’s sampled. So all these items can be encoded in a Bloom
filter. But as the Bloom filter has a false positive rate q, this has to be
accounted for. More precisely, for a point query i, suppose among the
k Bloom filters that the coordinator has received, Zi of them says “yes”,
then we use the estimator

Bi =
εn
√

k
·

(
Zi − kq
1 − q

)
. (8.4)

DRAFT

8.2 Point Queries over Distributed Multisets 221

Algorithm 8.2: Point queries over distributed multiset: Node j

1 Initialize empty Bloom filter F j with any constant false positive
rate q;

2 for r ← 0 to log(
√

k/ε) do
3 Initialize empty Bloom filter F j[r] with false positive rate

qr ≤ 1/23r+1;

4 foreach i do
5 Let xi, j = ai, j

εn
√

k
+ bi, j, where ai, j and bi, j are non-negative

integers and ai, j ≤
√

k
ε
, bi, j <

εn
√

k
;

6 for r ← 0 to log(
√

k/ε) do
7 if ai, j[r] = 1 then insert i into F j[r];

8 With probability g(bi, j), insert i into F j;

9 Send F j, F j[0], F j[1], . . . , F j[log(
√

k/ε)] to Coordinator;

It can be shown that (8.4) is an unbiased estimator for the second term
of (8.3) with variance O((εn)2), for any constant q.

For the first term of (8.3), the idea is to consider each ai, j in its bi-
nary form and dealing with each bit individually. Let ai, j[r] be the r-th
rightmost bit of ai, j (counting from 0). For each r, node j encodes all the
items i where ai, j[r] = 1 in a Bloom filter with false positive probability
qr ≤ 1/23r+1. For any item i, suppose Zi,r is the number of Bloom filters
that assert ai, j[r] = 1. Then we use the following estimator for the first
term of (8.3):

Ai =
εn
√

k

log(
√

k/ε)∑
r=0

2r Zi,r − kqr

1 − qr
. (8.5)

This is an unbiased estimator of the first term of (8.3) with variance
O((εn)2) (details in the further details section below).

The pseudocode for the nodes and the coordinator is given in Algo-
rithm 8.2 and 8.3.

All the Bloom filters received by the coordinator constitute the sum-
mary for the entire multiset, on which any point query can be posed.
The total size needed for all the BloomFilter instances can be shown to
be O(

√
k/ε) bits.

DRAFT

222 Summaries over Distributed Data

Algorithm 8.3: Point queries over distributed multiset: Coordi-
nator with query i

1 Zi ← the number of F j’s that assert containing i;
2 for r ← 0 to log(

√
k/ε) do

3 Zi,r ← the number of F j[r]’s that assert containing i;

4 return
εn
√

k
·

Zi − kq
1 − q

+
εn
√

k

log(
√

k/ε)∑
r=0

2r Zi,r − kqr

1 − qr
;

Further Discussion. The uniform sampling algorithm. The analysis
of the uniform sampling algorithm is quite standard. Consider any
given i, which has yi copies in the entire multiset. For ` = 1, . . . , yi,
let Xi,` = 1 if the `-th copy is sampled, and 0 otherwise. We have
E[Xi,`] = p, and Var[Xi,`] = p(1 − p). Setting p = 1/ε2n, the estimator
has expectation

E[Yi] = E[Xi/p] = 1/p · E

 yi∑
`=1

Xi,`

 = 1/p · pyi = yi,

and variance

Var[Yi] = Var[Xi/p] = 1/p2·Var

 yi∑
i=1

Xi,`

 = 1/p2·yi p(1−p) ≤ yi/p ≤ (εn)2.

The basic version of the importance algorithm. We now analyze the
basic version of the biased sampling algorithm. Recall that the al-
gorithm samples each local count xi, j with probability g(xi, j) where
g(x) = min{x

√
k/εn, 1}. The estimator given in (8.1) has expectation

E[Yi] =

k∑
j=1

E[Yi, j]
g(Yi, j)

=

k∑
j=1

g(xi, j)
xi, j

g(xi, j)
=

k∑
j=1

xi, j = yi.

Now we consider the variance of Yi. Since we sample an item
with probability one (i.e., zero variance) when the local count xi, j >

εn/
√

k, it is sufficient to consider the worst case when all xi, j ≤

DRAFT

8.2 Point Queries over Distributed Multisets 223

εn/
√

k. We have

Var[Yi] =

k∑
j=1

x2
i, j(1 − xi, j

√
k/εn)

xi, j
√

k/εn

=
εn
√

k

k∑
j=1

xi, j −

k∑
j=1

x2
i, j

≤
εn
√

k
yi −

1
k

y2
i (Cauchy-Schwartz inequality)

= −

(
yi
√

k
−
εn
2

)2

+
(εn)2

4
≤

1
4

(εn)2.

For the communication cost, we can easily derive that this algo-
rithm samples and transmits a total of

∑
i, j g(xi, j) ≤

∑
i, j xi, j

√
k/εn =

n ·
√

k/εn =
√

n/ε item-count pairs (in expectation).

The advanced version of the biased sampling algorithm. Recall that in
the advanced version of the algorithm, we decompose the global
count yi into two terms as in (8.3) and estimate each of them sep-
arately. The second term is easier to analyze, as it is similar to the
basic version, except that we need to take into account the false
positive rate q of the Bloom filters.

We define Zi, j to be the indicator random variable set to 1 if the
Bloom Filter from node j asserts that it contains the item i, and 0
otherwise. It is easy to see that Pr[Zi, j = 1] = g(bi, j) + (1 − g(bi, j))q,
and thus E[Zi, j] = g(bi, j) + (1 − g(bi, j))q. Then we have

E[Bi] =
εn
√

k
·

E[Zi] − kq
1 − q

=
εn
√

k
·

∑k
j=1 E[Zi, j] − kq

1 − q

=
εn
√

k
·

(1 − q)
∑k

j=1 g(bi, j) + kq − kq

1 − q

=
εn
√

k

k∑
j=1

g(bi, j) =

k∑
j=1

bi, j.

The variance of the estimator is

Var[Bi] =
(εn)2

k(1 − q)2 Var[Zi]

DRAFT

224 Summaries over Distributed Data

=
(εn)2

k(1 − q)2

k∑
j=1

Var[Zi, j]

=
(εn)2

k(1 − q)2

k∑
j=1

((g(bi, j) + (1 − g(bi, j))q)(1 − g(bi, j) − (1 − g(bi, j))q))

=
(εn)2

k(1 − q)2

 k
4
−

 (1 − q)
∑k

j=1 bi, j

εn
−

(1 − 2q)
√

k
2

2
≤

(εn)2

4(1 − q)2 .

Thus, it is sufficient to set a constant q so that Var[Yi] = O((εn)2).
The communication cost for this part is the same as in the basic
version, except that since now each sampled item-count pair only
consumes O(log(1/q)) = O(1) bits, the total cost is O(

√
n/ε) bits.

For the first term, we need to show that E[Ai] =
εn
√

k

n∑
j=1

ai, j, and

bound Var[Ai]. Let Zi,r be the number of Bloom filters that asserts
ai, j[r] = 1. Let ci,r =

∑k
j=1 ai, j[r]. Since there are k − ci,r Bloom filters

which may, with probability qr, assert ai, j[r] = 1 despite ai, j[r] = 0,
it is easy to see that E[Zi,r] = ci,r + (k − ci,r)qr, and Var[Zi,r] = (k −
ci,r)qr(1 − qr) ≤ kqr(1 − qr). Thus we have

E[Ai] =
εn
√

k

log(
√

k/ε)∑
r=0

2r E[Zi,r] − kqr

1 − qr

=
εn
√

k

log(
√

k/ε)∑
r=0

2rci,r =
εn
√

k

k∑
j=1

ai, j,

and

Var[Ai] =
(εn)2

k

log(
√

k/ε)∑
r=0

22r

(1 − qr)2 Var[Zi,r]

≤ (εn)2
log(
√

k/ε)∑
r=0

22r qr

1 − qr
.

So as long as we set qr ≤ 1/23r+1, we can bound Var[Ai] by O((εn)2),
as desired. The cost for each ai, j[r] = 1 is thus O(log(1/qr)) = O(r)
bits. Since each ai, j[r] = 1 represents 2r εn

√
k

copies of an item, the

DRAFT

8.3 Distributed Ordered Data 225

amortized cost for every εn
√

k
copies is O(r/2r) = O(1) bits. Therefore,

the total communication cost is O(
√

k/ε) bits.

Implementation Issues. For the above analysis to go through, the nodes
need to use independent random sources, including the randomness in
the sampling and the random hash functions in their Bloom filters.

History and Background. The sampling framework and the idea to
combine with Bloom filters were introduced by Zhao et al. [235]. Their
algorithm was later simplified and improved by Huang et al. [130] to
the version presented here. The O(

√
k/ε)-bit communication cost was

later shown to be optimal for k ≤ 1/ε2 [229], while the O(1/ε2)-bit com-
munication cost achieved by the simple random sampling algorithm is
optimal for k > 1/ε2.

8.3 Distributed Ordered Data

Brief Summary. In this section, we revisit the problem considered in
Chapter 4, i.e., rank and quantile queries on a set A of n elements drawn
from an ordered universe, except that here the set A is partitioned into
k pieces, each held by a different node. In this section we assume that
there are no duplicates in the set A. Recall that for an element x, the
rank of x in A (x may or may not be in A) is rank(x) = |{y < x : y ∈ A}|.
An ε-approximate rank query for element x returns an estimated rank
r̃ such that

rank(x) − εn ≤ r̃ ≤ rank(x) + εn,

while an ε-approximate quantile query for a rank r returns an element
x such that

r − εn ≤ rank(x) ≤ r + εn.

Using the summaries described in Chapter 4 and merging them re-
quires a communication cost of at least Ω(k/ε). Below we present an
algorithm with communication cost Õ(

√
k/ε).

Operations on the summary. Let t = bεn/
√

k log(2/δ)/2c, where δ will
be the probability of exceeding the ε-error guarantee. The algorithm
is very simple. Each node first sorts its own set of elements. Then it
chooses an offset b uniformly at random between 0 and t− 1, and sends

DRAFT

226 Summaries over Distributed Data

the (at+b)-th element to the coordinator, for a = 0, 1, 2, Since one out
of every t elements is selected, the total communication cost is O(n/t) =

O(
√

k log(1/δ)/ε).
To answer a rank query for any given element x, the coordinator sim-

ply counts the number of elements received from all the nodes that are
smaller than x, multiplied by t.

To answer a quantile query for a given rank r, the coordinator just
sorts all the elements received, and returns the one at position br/tc.

Further Discussion. We first analyze the error in the rank query
for any given element x. Let rank(x, i) be the local rank of x at node
i, i.e., the number of elements smaller than x stored at node i. It
is clear that the global rank of x is rank(x) =

∑
i rank(x, i). Effec-

tively, the coordinator computes an estimate of rank(x, i), denoted
r̂ank(x, i), for each i and adds them up, whereas r̂ank(x, i) is simply
the number of selected elements at node i that are smaller than x,
multiplied by t. Recall that the algorithm chooses the offset b uni-
formly at random between 0 and t − 1, so we have

r̂ank(x, i) =


⌊

rank(x,i)
t

⌋
· t, w.p. 1 − rank(x,i) mod t

t ;(⌊
rank(x,i)

t

⌋
+ 1

)
· t, w.p. rank(x,i) mod t

t .

One can check that

E[r̂ank(x, i)] =

⌊
rank(x, i)

t

⌋
· t + (rank(x, i) mod t) = rank(x, i).

Therefore, r̂ank(x) =
∑

i r̂ank(x, i) is an unbiased estimator of rank(x).
Since it is a sum of independent random variables, each of which
has a bounded range of t = εn/(

√
(k/2) log(2/δ)), we can invoke the

Chernoff-Hoeffding inequality 1.4 to obtain the following concen-
tration results:

Pr
[∣∣∣∣r̂ank(x) − rank(x)

∣∣∣∣ > εn
]
≤ 2 exp

(
−2(εn)2

kt2

)
= δ,

i.e., the probability that the estimated rank deviates from the true
rank by more than εn is at most δ.

To have a guarantee on quantile queries, we set δ = ε/3 in the al-
gorithm. This ensures that any rank query can be answered within

DRAFT

8.3 Distributed Ordered Data 227

error εn with probability at least 1 − ε/3. Then, with at least con-
stant probability, the estimated rank is accurate (within error of εn)
for all the 1/ε − 1 elements that rank at εn, 2εn, . . . , (1 − ε)n, which
is enough to answer all rank queries. When all rank queries can
be answered within εn error, all the quantile queries can also be
answered with the desired error guarantee.

History and Background. The algorithm presented above is a simpli-
fication of the algorithm described in [129] for the 1D case. The general
algorithm works in higher dimensions and computes an ε-approximation
(see Section 5.1) for any range space with bounded discrepancy. How-
ever, in higher dimensions, the algorithm relies on discrepancy mini-
mization [17], which is not known to be practical.

If we directly use this algorithm on a general communication net-
work, the communication cost will be O(h

√
k/ε), where h is the diame-

ter of the network. In [128], a better algorithm with communication cost
O(
√

hk/ε) was presented.

