
DRAFT
9

Other Uses of Summaries

In this chapter, we discuss some other applications and manipulations
for working with summaries. These include nearest neighbor search;
reducing the significance of older updates; ways to combine summaries
with other data transformations; and operations on summaries such as
re-weighting and re-sizing.

9.1 Nearest Neighbor Search

The nearest neighbor search problem, also known as similarity search, is
defined as follows: Given a set P of n points in a metric space with dis-
tance function D, build a data structure that, given any query point
q, returns its nearest neighbor arg minp∈P D(q, p). This problem has a
wide range of applications in data mining, machine learning, computer
vision, and databases. However, this problem is known to suffer the
“curse of dimensionality”, i.e., when the dimensionality of the metric
space is high, there does not seem to be a method better than the naive
solution, which, upon a query, simply scans all the points and computes
D(p, q) for every p ∈ P.

The past few decades have seen tremendous progress on this prob-
lem. It turns out that if some approximation is allowed, then the curse
of dimensionality can be mitigated, and solutions significantly more ef-
ficient than the linear search method exist. Many of them are actually
based on computing a small summary for each point in P, as well as for
the query point q. If the summaries are “distance-preserving”, then the
nearest neighbor of q can be found by searching through the summaries
or performing a few index look-ups, which can be more efficient than
searching over the original points in P.

228

DRAFT

9.1 Nearest Neighbor Search 229

Most solutions along this direction actually solve the approximate
near neighbor problem, which is parameterized by an approximation
factor c > 1 and a radius r > 0. This problem asks the data struc-
ture to return a p ∈ P such that D(p, q) ≤ cr, provided that there ex-
ists a point p′ with D(p′, q) ≤ r. If no such p′ exists, the data struc-
ture may return nothing. This is in effect a “decision version” of the
nearest neighbor problem. Thus, to find the (c-approximate) nearest
neighbor, one can build multiple copies of the data structure with r =

∆min, c∆min, c2∆min, . . . ,∆max, where ∆min and ∆max are the smallest and
largest possible distances between the query and any point in P, re-
spectively. In practice, this solution is often sufficient, as one does not
have to set ∆min and ∆max to be the true minimum and maximum dis-
tances; instead, the user may use a range that is of his/her interest:
a nearest neighbor with distance too large, even if found, may not be
very interesting; on the other hand, neighbors with distances smaller
than some ∆min may be equally good. Theoretically speaking, this ap-
proach leads to a space complexity that is not bounded by any function
of n. However, more complicated reductions that incur a logO(1) n loss
do exist [124].

In this section, we review two types of solutions for the approximate
near neighbor (ANN) problem based on computing small summaries
over the points. The first achieves logarithmic query time, but with a
high requirement on space; the second one strikes a better balance be-
tween space and time, and is used more often in practice.

9.1.1 ANN via Dimension Reduction

The Johnson-Lindenstrauss Transform as described in Section 5.5 is a
summary over points in Rd that preserves the `2-distance up to a (1+ε)-
factor. Most importantly, by setting δ = 1/n2, we see from Section 5.5
that the size of the summary, i.e., the dimensionality of the transformed
points, is only k = O

(
log n
ε2

)
, which is completely independent of d. Thus,

it offers an efficient way to solve high-dimensional ANN, by searching
over the transformed points in Rk.

More precisely, we perform the Johnson-Lindenstrauss Transform on
every point p ∈ P. Let f (p) ∈ Rk be the transformed point of p. We
build an ANN data structure over f (P) = { f (p) | p ∈ P}, as follows. For
a given radius r, we discretize the space Rk into cubes of side length
εr/
√

k. Note that each cube can be identified by a k-integer tuple. For
every p ∈ P, let S (p) be the set of cubes that intersect the ball B f (p),r. We

DRAFT

230 Other Uses of Summaries

build a dictionary data structure1 mapping each cube to an arbitrary
point p such that the cube is in S (p). If there is no such p, this cube will
not be stored in the dictionary. For a given query q, we just compute
f (q), locate the cube that contains f (q), and use the dictionary structure
to find the cube and report its associated point p. If the cube does not
exist in the dictionary, we return nothing.

Below, we will show that the algorithm solves the ANN problem
with an approximation ratio of c = 1 + 3ε. The space needed by the data
structure is O(dn)+nO(log(1/ε)/ε2) and the query time is O

(
d log n
ε

)
. Note that

by replacing 3ε with ε, the approximation ratio can be scaled to 1 + ε

with no change in the asymptotic bounds on space and query time.

Further Discussion. Now we analyze the approximation guaran-
tee provided by the above algorithm. Let q be the query point. We
know from the Johnson-Lindenstrauss Transform that, with prob-
ability at least 1/2, we have

(1 − ε)D(p, q) ≤ D(f (p), f (q)) ≤ (1 + ε)D(p, q)

for all p ∈ P. The following analysis will all be based on this hap-
pening.

Let p′ be a point in P with D(p′, q) ≤ r. We need to show that
the algorithm returns some p ∈ P with D(p, q) ≤ cr for some c. As
described, the algorithm will try to find in the dictionary the cube
containing q, and returns some p such that this cube is in S (p).
Note that this cube must exist in the dictionary; indeed, because
D(p′, q) ≤ r, this cube must belong to S (p′). But the point associated
with this cube may not be p′, but some other p such that B f (p),r

also intersects this cube. Note that the maximum distance between
any two points inside the cube is

√
k · (εr/

√
k)2 = εr. So if B f (p),r

intersects the cube, by the triangle inequality, we must have

D(f (p), f (q)) ≤ r + εr = (1 + ε)r.

1 A dictionary data structure stores a set S of elements from a discrete
universe, each with some associated data. For any given x, the
structure can return x and its associated data, or report that x does
not exist in S . One concrete solution is a hash table [59], which uses
linear space, and answers a query in O(1) time in expectation.

DRAFT

9.1 Nearest Neighbor Search 231

Therefore, we have

D(p, q) ≤
1

1 − ε
D(f (p), f (q)) =

1 + ε

1 − ε
r ≤ (1 + 3ε)r,

assuming ε ≤ 1
3 . Thus, this algorithm solves the ANN problem

with an approximation ratio of c = 1 + 3ε.
It remains to analyze the space and query time of this ANN data

structure. The query time is dominated by the Johnson-Lindenstrauss
Transform. Using the Sparse Johnson-Lindenstrauss Transform (Sec-
tion 5.5), this can be done in time O

(
d log n
ε

)
. The subsequent dictio-

nary lookup takes time O(k) = O
(

log n
ε2

)
, which is asymptotically

smaller than O
(

d log n
ε

)
when d > 1

ε
. Note that d ≤ 1

ε
is considered

low-dimensional and there is no need to use this data structure.
The space needed by the data structure consists of two parts: We

first need to store all the raw data points, which take space O(dn).
This is linear to the input size and is unavoidable. We also need
to store the dictionary, which stores all the distinct cubes that ap-
pear in some S (p). The number of such cubes is at most

∑
p∈P |S (p)|.

Recall that S (p) includes all cubes in Rk within a distance of r to
p and each cube has side length εr/

√
k. Using standard estimates

on the volume of `2 balls, one can show that |S (p)| ≤ (1
ε
)O(k). Each

cube needs space O(k) to store in the dictionary, so the total space
needed is

n ·
(

1
ε

)O(k)

· k = nO(log(1/ε)/ε2).

History and Background. The approaches described above were intro-
duced in [134, 124]. A similar approach was introduced in [158] in the
context of the Hamming space.

The dimension reduction is needed only when d = Ω(log n). For smaller
values of d, the ANN data structure described by Arya et al. [16] is bet-
ter, which uses O(dn) space and answers a query in O(c(d, ε) log n) time,
where c(d, ε) is a function that exponentially depends on d.

9.1.2 ANN via Locality-Sensitive Hashing

For constant ε, the method described above achieves logarithmic query
time, which is ideal, but at the cost of a high polynomial space, which is
not practical. Next, we describe an alternative approach, which needs a

DRAFT

232 Other Uses of Summaries

smaller space of O(dn + n1+ρ) for some 0 < ρ < 1, although at the cost of
increasing the query time from logarithmic to O(dnρ).

This approach, known as locality-sensitive hashing (LSH), restricts the
summary of a point p to take a single value. But the “distance-preserving”
requirement is also weaker: instead of preserving the distance up to a
constant factor, the summary is only required to distinguish between
large distances and small distances probabilistically. More precisely, the
summary will be a function h, randomly chosen from a familyH , such
that the following holds for any x, y in the metric space:

• if D(x, y) ≤ r, then Pr[h(x) = h(y)] ≥ p1;
• if D(x, y) ≥ cr, then Pr[h(x) = h(y)] ≤ p2.

For this framework to be of use, it is required that p1 > p2. Indeed,
the parameter ρ mentioned above depends on the gap between p1 and
p2, and will be shown to be ρ =

log p1
log p2

. Note that when p1 > p2, we must
have ρ < 1.

When the data points are taken from {0, 1}d and the distance measure
is the Hamming distance, a simple LSH family is bit sampling, which just
picks a random i ∈ {1, . . . , d} and maps the point to its i-th coordinate.
More precisely,H = {hi(x) = xi, i = 1, . . . , d}. When the D(x, y) ≤ r, x and
y have at least d − r equal coordinates, so p1 = 1 − r

d . Similarly, when

D(x, y) > cr, Pr[h(x) = h(y)] ≤ p2 = 1 − cr
d . Thus, ρ =

log(1− r
d)

log(1− cr
d) .

Another widely used LSH family is the MinHash. Here a data “point”
is a set, and the distance measure is the Jaccard similarity S (x, y) =

|x∩y|
|x∪y| .

Because a “similarity” is high when two points are close, the definition
of the LSH family is then restated as follows:

• if S (x, y) ≥ r, then Pr[h(x) = h(y)] ≥ p1;
• if S (x, y) ≤ r/c, then Pr[h(x) = h(y)] ≤ p2.

Let g be a function that maps each element in the universe to a real
number in [0, 1] independently. Then MinHash sets h(x) to be the ele-
ment that has the smallest g(·) value in the set x. It can be easily verified
that Pr[h(x) = h(y)] = S (x, y), so we have p1 = r, p2 = r/c, and ρ =

log r
log(r/c) .

However, such a truly random function g cannot be practically con-
structed. Instead, an `-wise independent function can be used instead,
and it has been shown that with ` = O(log(1/ε)), the MinHash function
can achieve Pr[h(x) = h(y)] = S (x, y) ± ε [133]. Thus, this is essentially
the same as the KMV summary described in Section 2.5, except that we
set k = 1 and use a hash function with a higher degree of independence
instead of pairwise independence.

DRAFT

9.1 Nearest Neighbor Search 233

Below, we describe a data structure for the ANN problem, assum-
ing we have an LSH family H for a distance function D(·, ·); the same
approach also works for the case when S (·, ·) is a similarity function
satisfying the revised LSH definition.

The first attempt would be to simply pick an h ∈ H randomly, and
build a dictionary structure mapping each unique hash value to the
list of points with that hash value. Upon a query q, we search the list
of points p with h(p) = h(q), and stop as soon as we find an p such
that D(p, q) ≤ cr. Due to the LSH property, points close to q are more
likely to be found than those far away from q. However, the problem
with this simple algorithm is that the probabilistic guarantee of the LSH
family is quite weak, and we may end up with searching in a long list
without finding any qualified p. Indeed, when using the bit-sampling
LSH family, there are only two distinct hash values (0 and 1), and each
list will have Ω(n) points!

We take two steps to fix the problem, which entail maintaining multi-
ple independent summaries. First, we pick k = log1/p2

n functions h1, . . . , hk ∈

H independently at random, and form a composite hash function g(x) =

(h1(x), . . . , hk(x)). We build the dictionary structure using g. This effec-
tively creates more distinct hash values, so will reduce the lengths of
the lists. But its also reduces the collision probability, i.e.,

• if D(x, y) ≤ r, then Pr[g(x) = g(y)] ≥ pk
1;

• if D(x, y) ≥ cr, then Pr[g(x) = g(y)] ≤ pk
2.

To make sure that close points will be found with high probability, we
repeat the whole construction ` times, i.e., we pick a total of `k functions
from H independently at random, and build ` dictionary structures,
each using a composite g consisting of k functions. Note that each point
will thus be stored ` times, once in each dictionary. To save space, we
do not need to store the points in full (i.e., all d coordinates) every time.
Instead, we just keep one copy of the points, while the lists can just store
pointers to the full points. Upon a query q, we check the list of points
with hash value g(q) in each of the ` dictionaries, and stop as soon as
we find a point p with D(p, q) ≤ cr.

Below, we will show that by setting ` = O(nρ), the algorithm de-
scribed can solve the ANN problem with at least constant probability,
while achieving the claimed space/time bounds mentioned at the be-
ginning of this subsection.

DRAFT

234 Other Uses of Summaries

Further Discussion. First, with ` = O(nρ), it is immediate that the
space needed is O(dn + `n) = O(dn + n1+ρ), since we only store one
copy of the full points, while only keeping pointers in the ` dictio-
naries.

Below, we analyze the query cost and the probability that the
data structure finds a point p with D(p, q) ≤ cr, provided that there
exists a point p′ ∈ P with D(p′, q) ≤ r. Consider the following two
events:
E1: g(p′) = g(q) in at least one of the ` dictionaries;
E2: the total number of points p with D(p, q) ≥ cr and g(p) = g(q) in

all dictionaries is at most 10`.
Note that under E1, the algorithm will succeed in finding a point

p with D(p, q) ≤ cr, because at least p′ can be such a p. Under E2,
we search through at most O(`) points. Computing the distance
between q and each of these points takes O(d) time, so the total
query time will be O(d`) = O(dnρ). We will next show that E1 and
E2 each happen with probability at least 0.9. Then by the union
bound, they happen simultaneously with probability at least 0.8.

We first analyze E1. From above, we know that

Pr[g(p′) = g(q)] ≥ pk
1 = p

log1/p2
n

1 = nlog1/p2
p1 = n

log p1
log(1/p2) = n−

log p1
log p2 = n−ρ.

By setting ` = c1nρ for some constant c1, we have

Pr[E1] ≥ 1 − (1 − n−ρ)c1nρ ≥ 1 − e−c1 .

It is clear that this can be made at least 0.9 by choosing a constant
c1 large enough.

Finally, we analyze E2. The expected number of points p with
g(p) = g(q) in one dictionary is at most

npk
2 = np

log1/p2
n

2 = n1+log1/p2
p2 = n1−1 = 1.

So the expected total number of such points in all ` dictionaries
is at most `. Then by the Markov inequality, we obtain that the
probability of exceeding this expectation by a factor of ten or more
is at most 0.1, and so Pr[E2] ≥ 0.9.

History and Background. The LSH framework follows from the work
of Indyk and Motwani [134], and was further developed in [115]. It has
since been significantly expanded in scope and applicability. Many met-

DRAFT

9.2 Time Decay 235

ric spaces have been shown to admit LSH families. For Hamming space,
the bit-sampling family can be shown to have ρ < 1/c, which is near-
optimal [190]. For Euclidean space, an LSH family based on random
projection is shown to achieve ρ < 1/c [80], which has been improved
to optimal ρ = 1/c2 + o(1). These LSH families are “data-independent”,
i.e., their constructions depend only on the metric space, not the ac-
tual point set P. The aforementioned LSH families are optimal when
restricted to such data-independent constructions. Recently, significant
progress has been made towards data-dependent LSH families, i.e., one
is allowed to construct the family after seeing P. This approach is very
popular in practice as real-world datasets often have some implicit or
explicit structure. This topic is beyond the scope of this volume, and
interested readers are referred to excellent surveys [13, 223].

9.2 Time Decay

In our discussion of data summarization so far, we have assumed that
while data may arrive incrementally, the importance placed on each
update is equal. However, there are scenarios where we wish to down-
weight the importance of some items over time: when computing statis-
tics, we might want today’s observations to carry more weight than last
week’s. This notion is referred to as “time decay”. There is a large lit-
erature on combining summaries with different models of time decay.
In this section, our aim is to introduce the key notions, and give some
simple examples.

Timestamped data. For time decay to apply, we need that each data
item also has an associated timestamp. We can assume that timestamps
correspond to particular times, and give a total ordering of the data
items. We further assume that items to be summarized are received in
timestamp order. Note that in large, distributed systems, these assump-
tions may be questionable. For the exponential decay model, out of or-
der arrivals can be fairly easily handled, while this is more challenging
for sliding windows and other models.

9.2.1 Exponential Decay

The model of exponential decay stipulates that the weight of an item
decreases as an exponential function of the difference between its times-

DRAFT

236 Other Uses of Summaries

tamp and the current time. That is, item x with timestamp tx is consid-
ered to have a weight of 2(−λ(t−tx)) at time t. Here, λ is a parameter that
controls the rate of the time decay. It can be thought of as encoding the
“half-life” of items: every 1/λ time units, the weight of the item halves
again.

Exponential decay can be motivated by analogy with physical pro-
cesses, such as radioactive decay, where the intensity of radioactive
emissions decay according to an exponential pattern. However, expo-
nential decay is popular as a time decay model in part because it is easy
to implement. Consider for example a simple counter, where we wish
to maintain the exponentially decayed sum of weights of items. With-
out exponential decay, we simply maintain the sum of all weights. With
exponential decay, we similarly maintain a sum of (decayed) weights.
Here, all the weights decay at the same (multiplicative) rate, so it suf-
fices to apply the decay factor to the sum. If timestamps are kept as
integers (say, number of seconds), then every timestep, we multiply the
current counter by the factor 2−λ, and add on any new weights that
have arrived in the new timestep. Merging two summaries is achieved
by just adding the counters.

In the case that time stamps are treated as arbitrary real values, we
modify this approach by keeping a timestamp tc with the counter c,
which records the most recent timestamp of an update to the counter.
When a new item with weight wi and timestamp ti ≥ tc arrives, we
update the counter in two steps. First, we decay the counter to the new
timestamp: we update c← c2−λ(tc−ti), and set tc ← ti. Then we add in the
new item at full weight: c← c + wi. A convenient feature of exponential
decay is that it can tolerate updates which arrive out of time-sorted
order: if ti < tc, we instead down-weight the item weight, and add it to
the counter, via c← c + wi2−λ(tc−ti).

Further Discussion. The correctness of these procedures can be
understood by expanding out the definitions of exponential decay.
For a given time t, the correct value of the decayed count is given
by ct =

∑
i wi2−λ(t−ti).

First, observe that to decay the counter to any desired timestamp
t′, we can simply multiply by an appropriate factor:

DRAFT

9.2 Time Decay 237

ct′ =
∑

i

wi2−λ(t′−ti)

=
∑

i

wi2−λ(t′−t+t−ti)

=
∑

i

wi2−λ(t′−t)2−λ(t−ti)

= 2−λ(t′−t)
∑

i

wi2−λ(t−ti) = 2−λ(t′−t)ct

It is also immediate from this sum expansion that if we want to
update a summary with timestamp t with an item with timestamp
ti, the decayed weight of the item is given by wi2−λ(tc−ti), and this
can be just added to the counter.

Exponential decay for other summaries. Due to the simple way that
exponential decay can be applied to a counter, we can apply expo-
nential decay to other summaries by simply replacing their internal
counters with decayed counters as appropriate. Some care is needed,
since not all summaries preserve their guarantees with this modifica-
tion. Some examples where exponential decay can be straightforwardly
applied include the various “sketch” summaries, such as Count-Min
Sketch, Count Sketch, AMS Sketch, and `p sketch. Here, since each
count stored in the sketch summary is a (weighted) sum of item weights,
they can be replaced with exponentially decayed counters, and we ob-
tain a summary of the exponentially decayed input. This allows us to,
for example, estimate the decayed weight of individual items, or the Lp

norm of the decayed weight vector.
For other summaries, similar results are possible, although more in-

volved. Replacing the counters in the Q-Digest structure with decayed
counters allows a weighted version of quantiles and range queries to
be answered, based on the decayed weights of items. Similarly, using
decayed counters in the SpaceSaving structure allows a decayed ver-
sion of point queries and heavy hitters to be answered. In both cases,
the operations on the data structures are largely as before, with the ad-
dition of decay operations on the counters, but the analysis to show the
correctness needs to be reworked to incorporate the decay. An imple-
mentation issue for both of these is to take a “lazy” approach to de-
caying counters. That is, we try to avoid requiring that all counters are
decayed to reflect the very latest timestamp t, which may take time pro-

DRAFT

238 Other Uses of Summaries

portional to the size of the data structure for each update. Instead, we
allow each counter to maintain a local timestamp tc, and only apply the
decay operation whenever that counter is accessed by an operation.

History and Background. The notion of exponential decay applied to
statistics is one that has appeared in many settings, and does not ap-
pear to have a clear point of origin. For similar reasons, the idea of
applying exponential decay to sketches seems to be “folklore”. Initial
efforts to extend exponential decay to other summaries is due to Man-
jhi et al. [169] for tracking item frequencies, and Aggarwal [6] for sam-
pling with decaying weights. The comments here about generalizing
Q-Digest and SpaceSaving are based on a note by Cormode et al. [68].

9.2.2 Sliding Windows

A second approach to time decay is to consider only a window of re-
cent updates as being relevant. That is, if every update has an associ-
ated timestamp, then we only want to answer queries based on those
updates falling within the recent window. A window can be defined
either time-based — e.g., we only consider updates arriving within the
last 24 hours — or sequence based — e.g., we only consider the most re-
cent 1 billion updates. Following the trend in the scientific literature, we
focus our main attention on the sequence based model, where the size
of the window is denoted W. The examples we give also allow queries
to be posed in the time-based window model.

If the space needed is not an issue, then we could in principle just
retain the most recent W updates in a buffer, and compute the desired
function of interest on demand for this buffer. However, with the as-
sumption that W is still a large quantity, we will discuss summary struc-
tures that use much smaller than W space.

We first consider an approach to computing the count of items falling
within a sliding window, then see how this can be generalized to other
problems.

Exponential histograms for windowed counts. The exponential histogram
method allows us to keep track of how many item arrivals occur within
a recent window. Our input is defined by a sequence of timestamps
ti that record item arrivals. We assume that these are seen in times-
tamp order. The structure will allow us to approximately determine
how many items arrived within a recent time window of size w and,

DRAFT

9.2 Time Decay 239

conversely, find the window size W containing approximately N recent
items.

The structure divides the past into a sequence of buckets, with associ-
ated counts and timestamps. The most recent k +1 buckets each contain
a single item, and record the timestamp at which that item arrived as
bi. The next (upto) k +1 buckets have a count of 2, corresponding to two
items, and record the timestamp of the older item. Then, the jth collec-
tion of (upto) k + 1 buckets have each bucket holding a count of 2 j and
recording the timestamp of the oldest item in each bucket.

Updating the structure is done so that the bounds on the number
and weights associated with each bucket are maintained. A new item is
placed in a bucket of weight 1 at the head of the list. If this causes there
to be more than k + 1 buckets of weight 1, then we take the oldest two
weight 1 buckets and merge them together to obtain a bucket of weight
2, whose timestamp is set to the older of the two timestamps. Similarly,
if we obtain more than k + 1 buckets of weight 2 j, we merge the two
oldest such buckets to obtain one new bucket of weight 2 j+1.

To find the number of items from timestamp t to the present (time-
window model), we add up the weights of all buckets with timestamps
more recent than t. Similarly, to estimate the duration of the time win-
dow containing N recent items (sequence-based model), we find the
most recent timestamp such that the sum of all bucket weights from
that point onwards exceeds N.

To limit the space needed, we can delete all buckets whose weight
is more than W/k, for a target window size of W. The space of the data
structure is bounded by O(k log(W/k)), and queries are answered with
an uncertainty in the count of 1/k, according to the below analysis.

A limitation of this data structure is that it does not allow the MERGE

operation: if two exponential histograms have been kept over different
inputs, it is likely that they have witnessed sufficiently different pat-
terns of arrivals that we cannot combine their bucket structures and
obtain a summary of the union of their inputs.

Further Discussion. According to the above invariants, we have
at most k + 1 buckets of each weight class. Hence, if we only keep
buckets of weight up to W/k, there are log2(W/k) weight classes,
each of which keeps at most k + 1 buckets. Hence the space needed
is O(k log2(W/k)).

DRAFT

240 Other Uses of Summaries

To understand the accuracy of the structure, observe that for
the k most recent items, we know their timestamps exactly. For
each weight class 2 j, note that there are at least k buckets in each
smaller class. Hence, the total weight of more recent items is at
least

∑ j−1
`=0 k2` = k2 j. So the uncertainty in the timestamps we have

corresponds to 2 j out of at least k2 j items, which is a 1/k fraction. If
we set 1/k = ε for a target accuracy ε, we obtain uncertainty in our
queries of ε relative error, with space proportional to O(1

ε
log(εW)).

Exponential histograms for summaries. As with exponential decay,
the structure of the exponential histogram is sufficiently simple that
it can be combined with other summary structures. In this case, the
natural thing is to keep the overall structure of the histogram and its
buckets, and augment the counts with instances of summaries that can
be merged. For example, we could keep a SpaceSaving data structure
in each bucket, and follow the merging rules. This would allow us to
estimate item frequencies within a sliding window. To find item fre-
quencies from (approximately) timestamp t to the present, we would
MERGE together all the summaries in histogram buckets with times-
tamps more recent than t. This would potentially omit a small number
of the oldest updates, at most a 1/k fraction of those that do fall in the
window. The space cost is then the product of the chosen summary size
by the number of buckets. The method is suitably general that it can
be applied to all summaries that possess a MERGE method. However,
because of the blow-up in space cost, there has been a lot of research to
find algorithms for specific problems with reduced space bounds.

Timestamps in summaries. A technique that can be used to introduce
sliding windows to certain summaries is to replace binary flags that re-
port the presence of an observation with a timestamp. Two such struc-
tures are the BloomFilter and HLL. In both of these, we use bits to record
whether an update has been mapped there by a hash function. We can
replace these bits with timestamps of the most recent item that has been
mapped to that location (or a null value if no item has been mapped
there). This allows us to query the summary for an arbitrary time win-
dow: given the window, we make a copy of the summary with a 1 bit
value in a given location if there is a timestamp that falls within the
time window at the corresponding location, and a 0 bit value other-
wise. Thus, we obtain a version of the original summary with exactly
the configuration as if we had only seen the items that fall within the

DRAFT

9.2 Time Decay 241

queried time window. The space cost is a constant factor blow up, as
we replace each bit with a timestamp (typically 32 bits).

History and Background. The exponential histogram was introduced
by Datar et al. [79], where they also discussed how to generalize it to
containing other summary structures. The paper also suggested the
idea of replacing bits with timestamps. Other work has considered how
to provide efficient solutions for specific problems under sliding win-
dows. For example, Lee and Ting [162] adapt the MG summary to keep
information on timestamps to allow sliding window frequency queries,
while still only requiring O(1/ε) space. A naive approach which com-
bined MG or SpaceSaving with the exponential histogram above would
instead require O(1/ε2 log(εW)) space.

Subsequent work by Braverman and Ostrovsky introduced the con-
cept of smooth histograms [35]. These allow a broad class of functions
to be approximated under the sliding windows model in a black box-
fashion, under some assumptions on the function being approximated.
The high-level idea is to start a new summary data structure at each
time step to summarize all subsequent updates. Many of these sum-
maries can later be deleted while still ensuring accurate answers. “Smooth-
ness” properties of the target function are used to bound the total space
needed.

9.2.3 Other Decay Models

We briefly mention other models of time decay.

Latched windows. The effort needed to give strong algorithmic guar-
antees for sliding window queries may seem too large. A simpler ap-
proach known as “latched windows” is tolerate a weaker notion of ap-
proximation. For example, if the goal is to monitor the state of a system
over the last 24 hours, it may suffice to create a summary for each hour,
and merge together the last 24 summaries to approximately cover the
last day. If there is no strong need to have the summaries cover the win-
dow to the last microsecond, this is a simple and practical approach.

Arbitrary functions via sliding windows. Alternatively, if the desire
is to approximate an arbitrary decay function on the data, this can be
simulated by making multiple calls to a sliding window summary. We

DRAFT

242 Other Uses of Summaries

assume that the decay function is differentiable and is monotone non-
increasing as the age increases. The observation is that we can rewrite
the value of a decayed query as an integral over time of the deriva-
tive of the decay function times the result of the function for the cor-
responding window. This formulation can be accurately approximated
by replacing the continuous integral with a sum over differences in the
decay function value, scaled by approximate window queries.

History and Background. The term “latched window” was coined by
Golab and Özu [117]. The observation about arbitrary function approx-
imation for sums and counts is due to Cohen and Strauss [55], and ap-
plied to summaries by Cormode et al. [75].

9.3 Data Transformations

The applicability of summary techniques can be extended when they
are applied not to raw data, but to a (usually linear) transformation of
the input data. This provides most flexibility when the transformation
can be computed on each individual update as it arrives, so the sum-
mary (or summaries) processes a sequence of transformed updates.

We have already seen examples of this, in the form of the Dyadic
Count Sketch (DCS, Section 4.4). The method can be understood as
first mapping each update into a collection of updates, each of which
is processed by a separate summary. There are a number of uses of
this approach to solve new problems by making use of existing solu-
tions. Moreover, these can be chained together: we apply a sequence
of transformations to each update, before it is summarized. The abil-
ity to MERGE the original summaries means that we can also MERGE

summaries of transformed data.

9.3.1 Dyadic Decompositions for Heavy Hitters

Several of the summaries for multisets (Chapter 3) address the ques-
tion of finding items from the input domain whose aggregate weight is
heavy — often called the “frequent items” or “heavy hitters” problem.
For example, the items kept by a MG or SpaceSaving summary include
those whose weight is larger than an ε fraction of the total weight, ‖v‖1.
Sketch-based methods, such as Count-Min Sketch and Count Sketch,
can also solve this problem, with guarantees in terms of ‖v‖1 or ‖v‖2.

DRAFT

9.3 Data Transformations 243

However, these sketches do not directly make it convenient to find the
heavy items. The most direct approach is to QUERY for the estimated
weight of every item in the domain — which is very slow for large do-
mains.

Instead, one can make use of the Dyadic Count Sketch (DCS) for this
problem. Recall that this applies a “dyadic decomposition” to the do-
main of the input items, [U]. A sketch is kept on the original items, on
pairs of adjacent items in the domain, on items grouped into fours, and
so on. This allows a recursive top-down search process to be applied to
find the heavy items. We begin by querying the weight of the left half
and the right half of the domain, using the statistics kept by the DCS.
For each dyadic interval whose total weight (according to the DCS) ex-
ceeds a ε fraction of the total weight, we split the dyadic interval into
its two constitute subintervals of half the length, and recursively pro-
ceed. If we reach an interval consisting of a single item, then this can
be returned as a “heavy hitter”. Provided all items have non-negative
weight, then every range containing a heavy hitter item will be a heavy
range, and so we will not miss any heavy items.

Further Discussion. The guarantees of this search procedure fol-
low from those for the DCS. Every query posed is transformed
into a point QUERY to one of the Count Sketch data structures that
make up the DCS structure. Consequently, the error is bounded
with sufficient probability. The total number of queries is bounded:
assuming that each query meets its accuracy bound, then the num-
ber of queries posed to a given level in the dyadic decomposition
is bounded, since the total weight at each level is bounded in terms
of the total weight of the input. For example, if we are seeking to
find all items of weight at least ε‖v‖1, then there are at most O(1/ε)
dyadic ranges at each level whose true weight exceeds ε‖v‖1. Con-
sequently, we can bound the time taken for the search as a function
of (1/ε) and the parameters of the sketch. Naively, this cost is poly-
logarithmic in the size of the domain from which items are drawn,
U, since we rescale the accuracy parameter by factors of log U (see
Section 4.4). A slightly improved analysis is due to Larsen et al.
[160, Appendix E], who show that the expected time to search for
all heavy hitters can be kept to O(1/ε log U) by keeping sketches of
total size only O(1

ε
log U).

DRAFT

244 Other Uses of Summaries

9.3.2 Coding transforms for heavy item recovery.

The problem becomes more challenging when items may have negative
weights, which can happen in more general scenarios. Here, the divide
and conquer approach can fail, since a heavy item can be masked by
surrounding items with the opposite sign. An approach is to still make
use of sketch summaries, but to arrange them based on ideas from cod-
ing theory.

A first example is based on the Hamming code. Given an m bit binary
message, the Hamming code adds dlog me additional “parity” bits. The
first parity bit is computed from the bits at odd locations in the message
(i.e., indices 1, 3, 5, ...). The jth parity bit is computed from the bits for
which the jth bit of their binary index is a 1. That is, the 2nd parity bit
depends on indices 2, 3, 6, 7, 10, 11, ...

This structure can be adapted to give a data transformation. Given
items drawn from a domain [U], we map to dlog Ue + 1 summaries —
for concreteness, we will use a Count Sketch, where each instance uses
the same parameters and the same set of hash functions. We follow
the same pattern: only those items whose jth bit of their index is 1 are
mapped into the jth sketch, and processed by the usual UPDATE rou-
tine. For the 0’th sketch, we process all updates without any exceptions.

To QUERY this modified summary, we can probe each cell of the
sketches in turn. For each cell in the 0’th sketch, we examine the magni-
tude of the count stored there, |c|. If it is above a threshold τ, then there
is evidence that there could be a heavy item mapping to this cell — or
there could be multiple items mapping there which sum to c. The pro-
cess attempts to “decode” the identity of an item, using the sketches of
the transformed data. The cell will be abandoned if it is not possible to
clearly determine the identity of an item.

The aim is to recover each bit of the heavy item’s identifier, if there
is a heavy item. Consider first the least significant bit (index 1), which
determines whether an item’s identifier is odd or even. We can inspect
the corresponding cell of the first sketch, which has included only the
odd items. If the magnitude of this cell, c1, is also above τ, and |c− c1| is
less than τ, then we can conclude that there is potentially an odd item
that is heavy. Meanwhile, if |c − c1| ≥ τ and |c1| < τ, we conclude that
there is potentially an even item that is heavy. The other two cases are
|c − c1| < τ and |c1| < τ, which implies that there are no items in this cell
above the threshold of τ; or |c − c1| ≥ τ and |c1| ≥ τ, which implies that
there could be more than one heavy item in this cell. In either of the last

DRAFT

9.3 Data Transformations 245

two cases, we abandon this cell, and move on to the next cell in the 0th
sketch.

This process can be repeated for every sketch. If at the end we have
not abandoned a cell, then we have a bit value (0 or 1) for each location,
which can be concatenated to provide an item identifier for an item
which is assumed to be heavy. This can be confirmed by, for example,
keeping an additional independent Count Sketch to cross-check the es-
timated weight, and also by checking that the candidate item is indeed
mapped to the cell it was recovered from.

Further Discussion. It’s clear that the above process will recover
some candidate items, but it is less clear whether items which are
heavy will be successfully identified. Consider some item which
is heavy (above the threshold τ), and assume that it is mapped by
the hash function into the zero’th sketch so that the total (absolute)
weight of other items in the same cell is less than the threshold τ.
Then we can be sure that every test that is applied to determine
the value of a particular bit in its item identifier will succeed —
we will find the correct value for that bit. Consequently, we will
recover the item correctly. Hence, the argument comes down to
bounding the amount of weight from other items that collides with
it in a particular cell. This can be done with a Markov-inequality
argument, similar to the Count-Min Sketch: the expected amount
of colliding mass is a 1/w fraction of the total mass (measured in
terms of either ‖v‖1 or ‖v‖22), where w is the width of the sketch data
structure. Choosing τ to be at least 2‖v‖1/w, (or at least 2‖v‖2/

√
w

in the `2 case) means that there is at least a constant probability to
find a given heavy item in each row of the sketch. This probability
is amplified over the rows of the sketches. If we ensure that the
number of rows is O(log w/δ), then we ensure that we can find all
heavy items with probability at least 1 − δ.

History and Background. This Hamming code-inspired approach to
finding heavy items is described by Cormode and Muthukrishnan [70,
71], with similar ideas appearing previously in [110]. It is possible to
use the same approach with more complex code constructions, see for
example [192]. Other approaches are based on the idea of applying
an invertible remapping to item identifiers, and breaking these into
smaller chunks for sketching, yielding “reversible sketches” [202]; and

DRAFT

246 Other Uses of Summaries

the counter-braids approach which use a random mapping to sketch
entries of varying capacity, based on low-density parity check codes [167].
Similar ideas are used to construct algorithms with improved space
bounds based on coding items so that heavy items appears as “clus-
ters” within a graph [160].

9.3.3 Range Transformations

Given a data vector v indexed over the integer domain [U], a range
query [l, r] is to find the quantity

∑r
i=l vi. With a summary that allows

us to estimate entries of v, we can simply sum up the corresponding
estimates. However, the query time, and the error, tends to scale pro-
portional to the length of the range, |r− l+1|. The dyadic decomposition
allows us to answer range queries more efficiently, and with lower er-
ror. This is already provided by the DCS (Section 4.4), where the case of
a rank query is discussed. Since a rank query for index x corresponds
to the range query [0, x−1], we can answer range queries by computing
rank(r − 1) − rank(l), and obtain error ε‖v‖1.

Range queries generalize to higher dimensions. One approach dis-
cussed in Section 5.1 is based on ε-nets and ε-approximations is effec-
tive for a data set of points arriving in d dimensions. However, when
data points may arrive and depart, a different approach may be needed.
The notion of dyadic decompositions can be extended to multiple di-
mensions: we perform a dyadic decomposition on each dimension, and
summarize vectors of membership of the cross-product of these decom-
positions. Then each data point falls into O(logd U) cells, and the space
required to provide an ε‖v‖1 guarantee scales with O(log2d U). This can
be effective for small d, but is often too costly for more than 2-3 dimen-
sions.

History and Background. The idea of dyadic decompositions is a ubiq-
uitous idea in computer science and computational geometry, and has
been independently suggested within the context of data summariza-
tion several times. An early example is due to Gilbert et al. [114]. Discus-
sion and evaluation of different sketching approaches to range query
estimation is given by Rusu and Dobra [84, Section 6], in the context of
estimating the join size between database relations (which is equivalent
to inner products of vectors).

DRAFT

9.3 Data Transformations 247

9.3.4 Linear Transforms

A large class of data transformations can be described as linear trans-
formations. That is, if the data can be considered to define a vector, v,
the transformation can be considered to be a (fixed) matrix A so that the
transformed data is the vector Av. Note that our above examples, such
as the dyadic decomposition, meet this definition of a linear transfor-
mation.

Many other transformations meet this definition, in particular basis
transformations, where in addition the (implicit) transformation A rep-
resents an (orthonormal) basis transformation, so that AAT = I. That
is, distinct rows of A are orthogonal, and the (Euclidean) norm of each
row is one. These naturally compose with sketching techniques. Since
many of the sketch summaries we have seen, such as Count-Min Sketch,
Count Sketch, AMS Sketch and Sparse JLT are also linear transforma-
tions, we can write the joint action of a sketch S and a transformation A
as the product S A. Further, the structure of the transform may allow it
to be applied quickly. We give two examples that have been used in the
context of data summaries.

Discrete Haar Wavelet Transform (DHT). The Discrete Haar Wavelet
Transform (Haar transform, or wavelets for short) is used extensively
in signal processing as a way of transforming the data to extract high
level detail. Similar to other transformations such as (discrete) Fourier
transforms, it transforms an input vector of U entries into a vector of
U wavelet coefficients. The inverse transform of a set of coefficients re-
builds the corresponding input vector. It is often used as the basis of
data compression, since reducing the accuracy with which some coef-
ficients are stored, or dropping some entirely, still allows a fairly accu-
rate reconstruction of the original vector. Another useful feature of the
transform is that (one-dimensional) range queries can be answered by
combining only O(log U) wavelet coefficients (similar to the dyadic de-
composition). Last, the transform is an orthonormal basis, as described
above, and so the Euclidean norm of of the coefficients is equal to the
Euclidean norm of the input vector.

In more detail, each row in the Haar transform matrix is formed as
the concatenation of two adjacent dyadic ranges (i.e., a range whose
length is a power of two, beginning at an integer multiple of its length),
where the first range is multiplied by +1, and the second by -1, nor-
malized so that the row norm is 1. Hence, the transform is somewhat

DRAFT

248 Other Uses of Summaries

similar to the dyadic decomposition discussed above. As a result, it can
be combined with sketching: we can apply the Haar transform to each
update, then take each result and use them to UPDATE a sketch, such
as a Count Sketch. By combining this with methods such as the coding
approach outlined above, it is possible to recover the wavelet trans-
form accurately from the sketch. An important feature of the wavelet
transform is that it is relatively sparse: each column of the 2d × 2d trans-
form matrix has only d + 1 non-zero entries, and these can be computed
directly without storing the full matrix. Therefore, each data update
translates into d + 1 wavelet coefficient updates.

Discrete Hadamard Transform. The Discrete Hadamard Transform (Hadamard,
for short), is the Fourier transform when we consider the data to be in-
dexed as a d-dimensional hypercube. Compared to other Fourier trans-
forms, it is perhaps simpler to express: the 2d × 2d Hadamard transform
is given by Hi, j = 2−d/2(−1)〈i, j〉, where 〈i, j〉 is the modulo-2 inner prod-
uct of the binary representations of i and j. A sketch of the Hadamard
transform of a dataset can be computed as for the DHT: each update is
transformed to generate a set of updates to the Hadamard transform,
which are then used to UPDATE the sketch. However, the Hadamard
transform is very dense, so every update to the data produces 2d up-
dates to the transform. It may then be advantageous to buffer up some
updates before computing their transformation, which can be added on
to the sketch, using the properties of linearity: S H(x + y) = S Hx + S Hy.
We have mentioned one application of Hadamard transform already, in
our discussion of the Sparse JLT (Section 5.5).

History and Background. Computing the wavelet transform of a stream
of data was one of the first problems actively studied in that area. Gilbert
et al. [112] suggested first building a sketch of the original data, then es-
timating wavelet coefficients by building a sketch of each wavelet basis
vector, and estimating the inner product. The idea to instead transform
the input data into the wavelet domain as it arrives was suggested by,
among others, Cormode, Garofalakis and Sacharidis [63]. Computing
summaries to find the (sparse) Fourier transform of data has also had a
long history, going back to the start of the century [111]. As noted, the
Hadamard transform specifically plays an important role in instantia-
tions of the Johnson-Lindenstrauss transform [8]. More recently, there
has been a line of work to build summaries of the Fourier transform
so that the k biggest Fourier coefficients of data of size n can be found

DRAFT

9.4 Manipulating Summaries 249

faster than the (already quite fast) O(n log n)-time Fast Fourier Trans-
form [125].

9.4 Manipulating Summaries

Given different ways to summarize data as building blocks, there are
many possible ways to extend their applications by manipulating sum-
mary structures, such as combining or nesting them in ways beyond
the basic UPDATE and MERGE procedures.

9.4.1 Algebra on Summaries

Whenever we apply a MERGE operation on a pair of summaries, we are
relying on an algebraic property. This may be that MERGE(X,MERGE(Y,Z)) =

MERGE(MERGE(X,Y),Z), i.e., the MERGE operation is associative; or a
weaker statement that MERGE(X,MERGE(Y,Z)) ≈ MERGE(MERGE(X,Y),Z)
– that is, that the result of changing the merge order may not provide
identical results, but that the results are equivalent in terms of the ap-
proximation guarantees that they promise (encoded by the ≈ relation).

For some summaries, we have stronger algebraic properties. In par-
ticular, when the summary is a linear transform, as discussed in Sec-
tion 9.3.4. Recall that we say a summary is a linear transform when it
can be written as Av, when the input is described by a vector v. It then
immediately follows from properties of linear algebra that A(αv + βw) =

αAv + βAw. That is, we can apply linear scaling to the inputs v and w by
directly scaling the result of summarizing. This gives flexibility in ma-
nipulating summaries. In particular, it means that A(v−w) = Av−Aw: we
can summarize inputs v and w separately, then subtract the summaries
to obtain a summary of this difference. This allows, for example, using a
Count Sketch to estimate the difference in frequencies between two ob-
servations of a distribution (say, the difference between the distribution
yesterday and today). The error is proportional to ‖v − w‖2, which can
be much smaller than the alternative approach of separately estimating
the frequency of the two instances, which incurs error proportional to
‖v‖2 + ‖w‖2.

DRAFT

250 Other Uses of Summaries

9.4.2 Resizing a Summary

For traditional data structures that are initialized to a fixed size, it is
common to allow the structure to be “resized” to accommodate more
or fewer items, even if this requires emptying the structure of stored
items, and filling a new instance from scratch. While many summaries
we have seen are also initialized based on a fixed parameter, in order to
provide a particular approximation guarantee ε, say, it is rarely straight-
forward to resize a summary.

In several cases, it is possible to reduce the size of a summary, say
by halving the size parameter. For example, it is possible to resize a
BloomFilter summary down, e.g., to go from m to m/2 bits (when m
is even), by treating the left and right halves of the summary as the
subjects of a MERGE operation, and ignoring the most significant bit
of the hash values going forward. Similar results hold for sketches like
Count-Min Sketch, Count Sketch, AMS Sketch and Sparse JLT.

However, the inverse operation (doubling the size of the summary)
does not lend itself to such tricks. In general, we would not expect
summaries to be increased in size without some penalty in space or
accuracy. To provide the approximation guarantees associated with the
larger size would entail retrieving information which was previously
“forgotten” in order to ensure a smaller space bound. The best one
might hope for is that far in advance of the current structure filling
up with information, we would start a new instance of the summary in
parallel to summarize the subsequent updates. Then the total magni-
tude of those initial updates which were ignored would eventually be
sufficiently small that they would not impact the approximation guar-
antee.

9.4.3 Nesting Summaries

A natural approach to building new summaries is to “nest” summaries
inside one another. That is, we use one summary type as a sub-structure
within another one. We have already seen some examples that meet this
description. For example, the `0-sampler is built by nesting SparseRe-
covery summaries inside a sampling structure. We next describe some
more examples where one summary type is “nested” inside another.

Summaries using Probabilistic Counters Many summaries (particu-
larly sketch summaries) are based on collections of counters that count

DRAFT

9.4 Manipulating Summaries 251

the number of items mapped to those counters by hash functions. In
Section 1.2.2, we saw that a counter could be considered as a first ex-
ample of a summary. It is natural to replace an exact counter with a
MorrisCounter probabilistic counter. The result is to reduce the space
required for the summary when dealing with inputs truly huge in vol-
ume, since the bit size of the counters is reduced to the logarithm of
this amount. With careful argument, it can be shown that the resulting
estimates remain approximately correct.

Summaries using Distinct Counters Consider the problem where our
input is described by a sequence of pairs (x, y), and we want to find
those x values that are associated with a large number of distinct y val-
ues. For example, the pairs (x, y) could be edges in a graph, and we want
to find those nodes that have a high number of (distinct) neighbors. If
there were only a few x values, then we would keep a distinct counter
for each x (a KMV or HLL structure). If there were no duplicate (x, y)
pairs, we would use a frequent items structure such as SpaceSaving or
Count-Min Sketch summary. It therefore makes sense that to solve the
general form of the problem when there are many x values and many
repetitions that we can combine a frequent items structure with distinct
counters. A simple instantiation comes from taking a Count-Min Sketch
and replacing each counter with an HLL summary. Each (x, y) update
uses the Count-Min Sketch hash functions to map x to set of cells. Each
cell contains an HLL, which is updated with the value of y. The analysis
of the new nested summary is similar to that for the basic Count-Min
Sketch: to estimate the number of distinct y’s associated with a given x,
we inspect the cells where that x is mapped. Each one counts (approxi-
mately) the number of distinct y’s for that x along with other colliding
items. Taking the smallest of these estimates minimizes the amount of
noise from colliding items.

Summaries with Quantile Summaries Last, we can use quantile sum-
maries such as GK or Q-Digest as the nested summary. For example,
consider replacing the counters in a Count-Min Sketch with a GK sum-
mary. We can now process data represented by pairs (x, y), where x is
used to map into the Count-Min Sketch, and then y is used to update
the corresponding GK summary in the mapped cell. This allows us to
estimate the distribution of y values associated with a given x, by prob-
ing all the cells associated with x and interrogating the GK summary
with the lowest total weight. For x’s that are relatively rare, this will

DRAFT

252 Other Uses of Summaries

have a higher error, but fairly accurate answers can be provided for x’s
with high frequency.

History and Background. The idea of building sketches on top of prob-
abilistic counters is explored by Gronemeier and Sauerhoff [121]. Con-
sidine et al. [57] describe combinations of the Count-Min Sketch and
Q-Digest with the Flajolet-Martin sketch, a precursor to HLL. Motiva-
tion for this problem in the networking domain is given by Venkatara-
man et al. [221], which defines the notion of “superspreaders”. These
correspond to network addresses that communicate with a large num-
ber of distinct other addresses. Related problems, such as combining
frequency moments with distinct counts, are covered by Cormode and
Muthukrishnan [73]. Problems which require applying different stages
of aggregation have been studied variously under the labels of “corre-
lated aggregates” [217] and “cascaded norms” [139].

