General Properties of Optimal Decoding: EXIT function characterization of MAP decoding
Alexei Ashikhmin
Bell Labs

- ML and MAP decoding
- Mutual Information
- EXIT functions
- EXIT functions over Binary Erasure Channel
- EXIT functions over Gaussian Channel
- Bounds on EXIT functions

This talk is based on joint works with G. Kramer, S. Litsyn, S. ten Brink, E. Sharon
ML and MAP decodings

C is a binary code of the length n
We transmit $c \in C$ and receive $y = c + \text{noise}$

Decoding for minimization of the word error rate (ML Decoding):

Find $c' \in C$ such that $\Pr(c'|y) = \max_{c \in C} \Pr(c|y)$

Bitwise decoding (MAP or APP decoding):

For each code coordinate j we compute

$$\ln \frac{\Pr(c_j = 0|y)}{\Pr(c_j = 1|y)} = \ln \frac{\Pr(c_j = 0|y_{[j]})}{\Pr(c_j = 1|y_{[j]})} + \ln \frac{\Pr(c_j = 0|y_j)}{\Pr(c_j = 1|y_j)}$$
MAP decoders are used as constituent decoders in iterative codes (TURBO, LDPC and so on codes)

LDPC codes:
Mutual Information

• X and Y are random variables

• Mutual Information between X and Y is defined as

$$I(X; Y) = \sum_{x,y} \Pr(x) \Pr(y|x) \log \frac{\Pr(x|y)}{\Pr(x)}$$

• If X and Y are independent then

$$I(X; Y) = 0$$

• If Y is a function of X, and

$$\Pr(x = 0) = \Pr(x = 1) = 1/2$$

then $I(X; Y) = 1$
Extrinsic Information Transfer (EXIT) function

\[
\begin{array}{c|c|c}
\text{Encoder} & \begin{array}{c} c_1 \\ \vdots \\ c_j \\ \vdots \\ c_n \end{array} & \text{Channel} & \begin{array}{c} y_1 \\ \vdots \\ y_j \\ \vdots \\ y_n \end{array} & \text{MAP Decoder} & \begin{array}{c} e_1 = \Pr(c_1 | y_{[1]}) \\ \vdots \\ e_j = \Pr(c_j | y_{[j]}) \\ \vdots \\ e_n = \Pr(c_n | y_{[n]}) \end{array}
\end{array}
\]

The average input (apriori) information

\[
I_{in} = \frac{1}{n} \sum_j I(C_j; Y_j)
\]

The average output (aposteriori) information

\[
I_{out} = \frac{1}{n} \sum_j I(C_j; E_j)
\]

\(I_{out}(I_{in})\) is called the **EXIT function** of the code over a given channel.

Stephan ten Brink introduced this notion; also suggested tracking evolution of mutual information during iterative decoding.
Repetition Codes

Single Parity-Check Codes

Edge Interleaver

variable nodes, $q=0.5$

check nodes
Binary Erasure Channel

\[I(\mathbb{C}; Y) = 1 - q \]

\[\mathbb{C} \]

\[0 \quad 1 - q \quad 0 \]

\[q \quad \text{erasure} \quad Y \]

\[q \]

\[1 \quad 1 - q \quad 1 \]

\[G = \]

\[1 \quad 2 \quad 3 \quad t \]

\[G_\psi \]

\[G \text{ is a generator matrix of a code } \mathbb{C} \]

\[G_\psi \text{ is a } t \text{ columns submatrix of } G \]

The function

\[r_t(\mathbb{C}) = \sum_{\psi \in \{1, \ldots, n\}, |\psi| = t} \text{rank}(G_\psi), \quad t = 1, \ldots, n \]

is called the information function of \(\mathbb{C} \)

(Helleseth, Kløve, Levenshtein, 1997)
Theorem 1

\[
I_{out}^{BEC}(I_{in}) = 1 - \frac{1}{n} \sum_{i=1}^{n} I_{in}^{i-1}(1 - I_{in})^{n-i}[i \cdot r_t(C) - (n - i + 1) \cdot r_t(C)].
\]

Numbers \(r_t\) can be found with the help of generalized Hamming weight enumerator \(A_i^r\):

\[r_t = \text{complicated function of}(A_i^r)\]

For example we know \(A_i^r\) for the Hamming code. Therefore we can compute \(I_{out}(I_{in})\)
Hamming Code $n=31$
“Advantages” of MAP decoding over ML decoding

In the case of ML decoding there exist optimal codes:

Binary Symmetric Channel - Hamming codes are optimal

Binary Erasure Channel - MDS codes are optimal

\[G_{\text{MDS}} = \]

any \(k \) positions are independent
Simplex code

\[G = \begin{bmatrix}
0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 & 1
\end{bmatrix} \]

Code A

\[G = \begin{bmatrix}
1 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 1 & 1
\end{bmatrix} \]

FER = frame (code word) error rate

\(p \) is the channel erasure probability
How about MAP decoding?

Area Property

Theorem 2 In Binary Erasure Channel for a code (linear or nonlinear) of rate R we have

$$\int_0^1 I_{out}(I_{in})dI_{in} = 1 - R$$

It means there is no discrimination; every code is the best one somewhere.
Duality Property

Theorem 3 In BEC the EXIT functions of a code and its dual code are connected:

\[I_{out}(I_{in}) = 1 - I_{out}^\perp(1 - I_{in}) \]
Gaussian and Other Channels

We transmit c_j and receive $y_j = c_j + z_j$

Def. 1 A channel is called symmetric if

$$p_{Y|C}(-y|c) = p_{Y|C}(y|c).$$

Def. 2 A density f is called consistent if it satisfies

$$f(x) = f(-x)e^x. \quad (1)$$

Theorem 4 If inputs of a MAP decoder of a linear (distance invariant) code are symmetric and consistent then its outputs are also symmetric and consistent.

Repetition code of length n over AWGN channel $N(0, \sigma)$:

$$I_{in} = \frac{\sigma}{\sqrt{8\pi}} \int e^{-(x-2/\sigma^2)\sigma^2/2} \log_2(1 + e^{-x}) \, dx$$

$$I_{out} = \frac{n\sigma}{\sqrt{8\pi}} \int e^{-(x-2/n^2\sigma^2)n^2\sigma^2/2} \log_2(1 + e^{-x}) \, dx$$
Theorem 5 Single Parity Check Code of length \(n\) over symmetric and consistent channel has the following EXIT function

\[
I_{in} = \frac{1}{\ln 2} \sum_{i=1}^{\infty} \frac{1}{(2i)(2i-1)} [E(T^{2i})]
\]

\[
I_{out} = \frac{1}{\ln 2} \sum_{i=1}^{\infty} \frac{1}{(2i)(2i-1)} [E(T^{2i})]^{n-1},
\]

where

\[
T = \Pr(c_j = 1|y_j) - \Pr(c_j = -1|y_j).
\]
Duality for AWGN?

\[I_{in}^{AWGN}_{out,\text{parity check}}(I_{in}) = 1 - I_{in}^{AWGN}_{out,\text{repetition}}(1 - I_{in}) \]

\(I_{in}\)	0.02	0.08	0.2
\(I_E\) exact	1.105e-8	9.495e-6	0.00070
\(I_E\) from duality	0	1.124e-5	0.00073

0.4 0.6 0.8 0.9 0.96

0.0161 0.0975 0.3525 0.6046 0.8196

0.0163 0.0984 0.3541 0.6052 0.8194
Area property for AWGN?

The area theorem also does not hold in AWGN channel, but at least for repetition and single parity check codes

\[\int_{0}^{1} I_{\text{out}}(I_{\text{in}}) dI_{\text{in}} \]

is very close to \(1 - R\)
EXIT functions BEC ↔ AWGN

Theorem 6 For single parity check codes we have

\[
I_{out}^{AWGN}\left(\frac{E_b}{N_0}\right) = \sum_{i=1}^{\infty} \frac{1}{\ln(2)(2i-1)(2i)} I_{out}^{BEC}(\epsilon_i),
\]

where

\[
\epsilon_i = 1 - \int_{-1}^{+1} \frac{2t^{2i}}{(1 - t^2)\sqrt{16\pi \frac{E_b}{N_0} R}}\ e^{-\frac{(\ln\left(\frac{1+t}{1-t}-4\frac{E_b}{N_0}\right)^2}{16\frac{E_b}{N_0} R}} dt
\]
EXIT curve – [15,4] Simplex code

EXIT curve – [31,5] Simplex code
Probability of MAP Decoding Error

BER(Eb/No[dB]) – [31, 26] Hamming code

BER(Eb/No[dB]) – [31, 5] Simplex code
Bounds on EXIT functions

\[
\begin{align*}
I_{in} &= \frac{1}{n} \sum_{j} I(C_j; Y_j) \\
I_{out} &= \frac{1}{n} \sum_{j} I(C_j; E_j)
\end{align*}
\]

We would like to find a channel that maximizes (minimizes) \(I_{out} \) for given \(I_{in} \).

I. Land, S. Huettinger, P. Hoeher, J. Huber; and I. Sutskover, S. Shamai proved recently the following theorems:

Theorem 7 The Binary Symmetric Channel minimizes and Binary Erasure Channel maximizes \(I_{out} \) for given \(I_{in} \) in the case of repetition code.
Theorem 8 The Binary Symmetric Channel maximizes and Binary Erasure Channel minimizes I_{out} for given I_{in} in the case of single parity check code.