On Ramsey number of sparse uniform hypergraphs

A. Kostochka and V. Rödl

For a k-uniform hypergraph G, the Ramsey number $R(G,G)$ is the minimum positive integer N such that in every 2-coloring of edges of the complete k-uniform hypergraph K^k_N, there is a monochromatic copy of G. Say that a family \mathcal{F} of k-uniform hypergraphs is $f(n)$-Ramsey if there is a positive C such that $R(G,G) \leq C f(n)$ for every $G \in \mathcal{F}$ with $|V(G)| = n$.

Burr and Erdős conjectured that for every d, the families \mathcal{M}_d of graphs with maximum degree d and \mathcal{D}_d of d-degenerate graphs are n-Ramsey. Recall that a graph is d-degenerate if each its subgraph has a vertex of degree at most d. Chvátal, Rödl, Szemerédi and Trotter proved the first conjecture.

The second conjecture is open. However, Kostochka and Rödl proved recently that \mathcal{D}_d is n^2-Ramsey and then Kostochka and Sudakov proved that for every $\epsilon > 0$ and every positive integer d, the family \mathcal{D}_d is $n^{1+\epsilon}$-Ramsey.

In this talk, we prove that for every $\epsilon > 0$ and for every fixed k and d, the family \mathcal{D}_d^k of k-uniform hypergraphs with maximum degree at most d is $n^{1+\epsilon}$-Ramsey.