Optimization of Containers
Inspection at Port-of-Entry

E. A. Elsayed, Christina Young, Yada Zhu
Department of Industrial and Systems Engineering

Mingyu Li, Minge Xie
Department of Statistics

Rutgers University
Introduction

• Containers arrive at a port-of-entry for inspection
 • n attributes tested independently
• Sensors used to classify attributes of a container as safe ($d=0$) or suspicious ($d=1$) based on selected threshold values (T_i for station i)
• Overall accept/reject decision based on specified Boolean function of station decisions
Simple Container Inspection Procedure

Containers arriving at port

Segregation

95~97%

3~5% to be inspected

Station 1: Image Analysis

Result

Pass

Fail

Station 2: Physical & Visual Check

Result

Pass

Fail

Station 3: PRD & RIID

Result

Fail

Pass

CES Central Examination Site

Storage area: Containers to be picked up by receivers
Inspection Problem Description

• Threshold levels affect the decisions and probabilities of misclassification at each station
• Sequence of inspection stations affects the expected cost and time of inspection per container
• Inspection policy specifies sequence (S) and T_i values

Objective

Minimize expected cost of inspection, cost of container misclassifications, and expected inspection time

Decision Variables

Sensor threshold values and sequence of stations
Modeling Approach

• Assume the unit’s true state \((x)\) is 0 or 1

• A container attribute value comes from a mixture of two normal distributions, depending on the unit’s true state

• Let \(r\) represent the sensor reading returned from a unit, assumed equal to the attribute value

 \[
 r \mid x = 0 \sim \text{Norm}(\mu_0, \sigma_0^2) \\
 r \mid x = 1 \sim \text{Norm}(\mu_1, \sigma_1^2)
 \]

• For some value \(T_i\) at station \(i\)

 • If measurement \(r_i > \) threshold level \((T_i)\), then decision for station \(i\), \(d_i = 1\)

 • If \(r_i \leq T_i\), \(d_i = 0\)
Modeling Approach

• Assume prior distribution of suspicious containers is known: $\pi = P(x = 1) = 1 - P(x = 0)$

• Subscript i is used to indicate association with station i

• Assume parameters of the two normal distributions are known: μ_{0i}, μ_{1i}, σ_{0i}, σ_{1i}
Probabilities of Error

\[P(d_i = 0 \mid x = 1) = P(r_i \leq T_i \mid x = 1) = \Phi \left(\frac{T_i - \mu_{1i}}{\sigma_{1i}} \right) \]

Probability of false negative

\[P(d_i = 1 \mid x = 0) = P(r_i > T_i \mid x = 0) = 1 - \Phi \left(\frac{T_i - \mu_{0i}}{\sigma_{0i}} \right) \]

Probability of false positive
Cost of Misclassification

• The individual results of stations are combined according to defined system Boolean function to reach an overall inspection decision to accept or reject a container
• This system decision D may or may not agree with the container’s true status
• Probability of false accept, $P_{FA} = P(D = 0 \mid x = 1)$
• Probability of false reject, $P_{FR} = P(D = 1 \mid x = 0)$
• Two sources of container misclassification cost:
 • $c_{FA} =$ cost of false acceptance (undesired cargo)
 • $c_{FR} =$ cost of false rejection (manual unpack)
• Total cost: $C_F = \pi P_{FA} c_{FA} + (1-\pi) P_{FR} c_{FR}$
Cost of Inspection

• $c_i = \text{cost of using } i^{th} \text{ sensor}$

• Expected cost of inspection depends on probability of passing (or failing) sensor i:

 \[
 p_i = P(d_i = 0) = P(d_i = 0 | x = 0)(1 - \pi) + P(d_i = 0 | x = 1)\pi \\
 = (1 - \pi)\Phi\left(\frac{T_i - \mu_{0i}}{\sigma_{0i}}\right) + \pi\Phi\left(\frac{T_i - \mu_{1i}}{\sigma_{1i}}\right)
 \]

 \[
 q_i = 1 - p_i = P(d_i = 1 | x = 0)(1 - \pi) + P(d_i = 1 | x = 1)\pi \\
 = (1 - \pi)\left\{1 - \Phi\left(\frac{T_i - \mu_{0i}}{\sigma_{0i}}\right)\right\} + \pi\left\{1 - \Phi\left(\frac{T_i - \mu_{1i}}{\sigma_{1i}}\right)\right\}
 \]
Optimum Inspection Sequence

- The sequence in which stations are visited affects the expected cost of inspection
 - A sequence which minimizes this cost is known as an optimum sequence

Theorem 1: For a series Boolean decision function, inspecting attributes \(i, \ i = 1,2,\ldots,n \) in sequential order is optimum (minimizes expected inspection cost) if and only if: \(c_1 / q_1 \leq c_2 / q_2 \leq \ldots c_n / q_n \).

- A container is suspicious if decision for any station \(i \) is 1. In other words:

\[
F(d_1, d_2, \ldots, d_n) = (d_1 \lor d_2 \lor \ldots d_n)
\]
Optimum Inspection Sequence

• **Theorem 2:** For a parallel Boolean decision function, inspecting attributes i, $i = 1,2,\ldots,n$ in sequential order is optimum (minimizes expected inspection cost) if and only if:

$$c_1/p_1 \leq c_2/p_2 \leq \ldots c_n/p_n$$

In other words:

$$F(d_1, d_2, \ldots, d_n) = (d_1 \land d_2 \land \ldots d_n)$$
Total Expected Cost

- Example: parallel Boolean decision function
- Cost of misclassifications:

\[C_F = (\text{False acceptance cost}) + (\text{False rejection cost}) \]

\[= \pi c_{FA} \left[1 - \prod_{i=1}^{n} \left\{ 1 - \Phi \left(\frac{T_i - \mu_{i}}{\sigma_{i}} \right) \right\} \right] + (1 - \pi) c_{FR} \prod_{i=1}^{n} \left\{ 1 - \Phi \left(\frac{T_i - \mu_{0i}}{\sigma_{0i}} \right) \right\} \]
Total Expected Cost

• Example: parallel Boolean decision function

• Cost of inspection:

\[C_i = c_1 + \sum_{i=2}^{n} \left[\prod_{j=1}^{i-1} q_j \right] c_i \]

\[
= c_1 + \sum_{i=2}^{n} c_i \prod_{j=1}^{i-1} (1-\pi) \left[1 - \Phi \left(\frac{T_j - \mu_{0j}}{\sigma_{0j}} \right) \right] + \pi \left[1 - \Phi \left(\frac{T_j - \mu_{1j}}{\sigma_{1j}} \right) \right] \]

• Total expected cost:

\[c_{total} = C_I + C_F \]
Inspection Time

- Time for a container to complete inspection at station i denoted t_i
- Optimum sequence with regard to total expected inspection time can be found with similar method to cost
t_i could be a function of threshold T_i, approximated from data
Multi-Objective Problem

• Objectives
 \[
 \min_{\text{Sequence,Threshold}} \{c_{\text{total}}, t_{\text{total}} \}
 \]

 – Minimize the total expected cost including inspection cost and misclassification cost, \(c_{\text{total}} = C_l + C_F \)

 – Minimize the total expected inspection time \(t_{\text{total}} \)

• Some trade-off between objectives

• Goal: find solutions located along Pareto front

• Find min of weighted objective function
 \[
 f_{w_1,w_2}(S,T) = w_1 c_{\text{total}} + w_2 t_{\text{total}}, \quad w_2 = 1-w_1 \text{ for various weights}
 \]

 – Each solution is a Pareto optimal point for multi-objective problem

• Take advantage of optimal sequence theorem to improve efficiency of algorithms
Optimum Sequence for Weighted Objective

• Given fixed weights, optimum sequence theorem can be adapted
 – Change objective from c_i to $w_1c_i + w_2t_i$
• For parallel Boolean, minimum sequence condition:

\[
\frac{w_1c_1 + w_2t_1}{p_1} \leq \frac{w_1c_2 + w_2t_2}{p_2} \leq \ldots \leq \frac{w_1c_n + w_2t_n}{p_n}
\]

• Condition for series Boolean:

\[
\frac{w_1c_1 + w_2t_1}{q_1} \leq \frac{w_1c_2 + w_2t_2}{q_2} \leq \ldots \leq \frac{w_1c_n + w_2t_n}{q_n}
\]
Modified Weighted Sum Algorithm

• Computationally expensive to solve minimization of weighted objective function
 – Easier if sequence is known
• Apply optimum sequence given thresholds to compute
 \[f_{w_1,w_2}(T) = \min_{S} f_{w_1,w_2}(S,T) \]
• Solve \(\min_{T} f_{w_1,w_2}(T) \)
• Avoiding consideration of all potential sequences improves the efficiency of the algorithm
Solution Methods

• Three methods developed and implemented to compare optimality of results
• Grid search- complete enumeration of discrete threshold values
• Two methods involve repetitions with various weights to solve $\min_{T} f_{w_1,w_2}(T)$ and generate Pareto-optimal solutions
 – Matlab fmincon function
 – Genetic algorithm
• Output graphed (Pareto frontier)
 – Time vs. cost expectations
Numerical Example

• Three station system using parallel Boolean decision function
• Cost fixed for each station, $c_i = 1$
• Prior $\pi = 0.0002$
• Distribution parameters
 \[\mu_0 = [0 0 0] \quad \mu_1 = [1 1 1] \]
 \[\sigma_0 = [0.16 0.2 0.22] \quad \sigma_1 = [0.3 0.2 0.26] \]
• Cost parameters
 \[c_{FA} = 100000 \quad c_{FR} = 500 \]
• Time related
 \[a = [20 20 20] \quad b = [-3 -3 -3] \]
Comparison of Three Solution Methods

Grid Search

Genetic Algorithm

fmincon
Pareto-Optimal Solutions

• Output:
 – Graph of time vs. cost trade-off curve
 – Optimal sequence of sensors
 – Threshold level for each sensor

• Examples of solutions

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>T_1</td>
<td>T_2</td>
<td>T_3</td>
<td>Sequence</td>
<td>Cost</td>
<td>Time</td>
</tr>
<tr>
<td>0.2</td>
<td>0.75</td>
<td>0.35</td>
<td>2-3-1</td>
<td>9.03</td>
<td>1.16</td>
</tr>
</tbody>
</table>
Conclusions

- Port-of-entry container inspection problem was formulated to determine optimum threshold levels of sensors by minimizing total expected cost and time
 - Estimate threshold-dependent probabilities of false accept and false reject to calculate expected cost of false classification
 - Sequence of inspection affects expected cost and time of inspection but not probabilities of error
- Compare three approaches to multi-objective problem
 - GA provides dependable set of Pareto solutions
Acknowledgment and Website

• This research is conducted with partial support from ONR grant numbers N00014-05-1-0237, N00014-07-1-029 and NSF grant number NSFSES 05-18543 to Rutgers University

• For further information and related papers, please visit the DIMACS website

 http://dimacs.rutgers.edu/Workshops/PortofEntry