
Nicolas Hengartner
Statistical Science Group, Los Alamos National Laboratory

Nuclear smuggling is a clear and present danger

Materials

Interceptions

“Law enforcement officials in the US seize only 10 to 40% of the illegal drugs smuggled into the country each year

Russia stops from 2 to 10% of illegally imported goods and illegal immigrants on the border with Kazakhstan”

Total = 1.13 IAEA “significant quantities”
(8 kg Pu or 25 kg of U^{235} in HEU)
Active radiography is an established inspection technique.

To date, radiography has depended on artificial sources of radiation, which bring with them a risk-benefit tradeoff.

1895
First x-ray image
(Mrs. Roentgen’s hand)

2001
Inspection of truck with American Science and Engineering backscatter x-ray system.
Passive Source Radiography: Cosmic Radiation

No artificial radiation means:

1. Cars and trucks inspection without evacuating the driver
 significant time factor
2. Deployment abroad without local regulatory complications
 Detection at point of origine
3. No radiation signal to set off a salvage trigger
 Minimizes inspection risks.

1. Neutrons
2. Neutrinos
3. Electrons
4. Muons
5. Etc.
Cosmic-ray muons

• As cosmic rays strike our upper atmosphere, they are broken down into many particle components, dominated by muons.
• Muons have a large penetrating ability, being able to go through tens of meters of rock with low absorption.
• Muons arrive at a rate of 10,000 per square meter per minute (at sea level).
How Muons Interact with Material

Muons are charged either positive and negative.

High energy: Median 3 MeV

Two modes of interaction:
- Absorption
- Coulomb Scattering
Fig. 1 (top right). The pyramids at Giza. From left to right, the Third Pyramid of Mycerinus, the Second Pyramid of Chephren, the Great Pyramid of Cheops. [© National Geographic Society]

Luis Alvarez, 1950
Muon mapping of Chephren’s Pyramid

“Search for Hidden Chambers in the Pyramids”
Luis W. Alvarez *et al.*

Alvarez et al. used only absorption, not scattering

Successful experiment - existence of hidden chamber ruled out

- actual image with no hidden chamber
- simulated image with hidden chamber like the one in Cheops’ pyramid
Shadowgrams (from scattering)

Possible to get shadowgrams from scattering instead of absorption

Proton radiography
Basic Concept of Multiple-Scattering
Muon Radiography

- Track individual muons (possible due to modest event rate).
- Track muons into and out of an object volume.
- Determine scattering angle of each muon.
- Infer material density within volume from data provided by many muons.
Scattering is Material Dependent

![Graph showing radiation length and mean square scattering for various materials.]

- Water
- Plastic
- Concrete
- Aluminum (Z=13)
- Iron (Z=26)
- Copper (Z=29)
- Lead (Z=82)
- Tungsten (Z=74)
- Uranium (Z=92)

For 3 GeV muons:

- Radiation Length (cm)
- Mean Square Scattering (mrad²/cm)
Prototype Los Alamos instrument

- Tungsten Block
- Scintillator (temporary trigger)
- Chamber 1
- Chamber 2
- Chamber 3
- Chamber 4
- Muons
Reconstruction – Localizing Scattering

- Assume multiple scattering occurs at a point.
- Find point of closest approach (PoCA) of incident and scattered tracks.
- Assign (scattering angle)2 to voxel containing PoCA.
- Since detectors have known position uncertainty, signal may be spread over voxels relative to PoCA uncertainty.
- Simply add localized scattering signals for all rays.
Maximum Likelihood Image Reconstruction

Use single layer probability model to calculate the contribution of voxel j to the observed displacement of ray i.

Develop a model of the unknown object that maximizes the likelihood that we would observe what we actually observed.

E-M works well:

Can handle large voxelization
Compute as data comes in
First Muon Radiograph
Radiograph of another object
Clamp in z-projections
Objects
1x1x1 m³ Fe box (3 mm walls)
Two half density Fe spheres (automobile differentials)

ML reconstruction
1 minute exposure; with U sphere

ML reconstruction
1 minute exposure; No U sphere

Shielding of SNM works to our advantage!
Maximum Likelihood Tomographic Reconstruction
28x28x64 voxelation, 1 minute simulated data

3-D Perspective View

Side View

Top View

U in empty container

U in distributed Fe

U and car differentials

Calculation time: ~2 min on a 3 GHz single-processor Windows PC
Real data from drift tubes.

Cylindrical Drift Tube Geometry

- High E field at 20 μm wire causes gas avalanche multiplication
- e^- Drift Time $\cong 20 \text{ ns/mm} \times R$ in gas: $0 \leq \Delta T \leq 500 \text{ ns}$
- Radius of closest approach given by ΔT and saturated drift velocity v_d.
- Spatial resolution goal $\leq 0.4 \text{ mm}$

Representative Anode Signal

- Low count rate ($\sim \text{kHz}$) and multiplicity
 \Rightarrow Relatively large cell size allowed:
 $D \sim 2 \text{ inch}$
- Larger cell size \Rightarrow fewer channels
Drift tubes for muon tracking

- Potentially low cost
- No fancy materials
- Detector built from:
 - aluminum tubes
 - tungsten wire
 - argon gas

\[\text{Drift tracking equation} \]

\[Z = \Delta Z \]
Modules combined into Muon Tracker

- Drift tube detectors
- 4 x-y planes
- 128 tubes per x or y
 - 1024 channels total
- Reconfigurable

EOY 2004 Goal: 40 modules, 64” x 64” active area with good solid angle
Large Muon Tracker
Momentum Estimation

- Measuring particle momentum increases confidence in material inference.
- One method is to estimate momentum from scattering through known material.
- With 2 plates, $\Delta p/p$ is about 50%.
- With N measurements, $\Delta p/p$ approaches:

$$\sqrt{\frac{1}{2N}}$$
Bonus Material
Absorbtion

Data: \[Z_i = \begin{cases} 1 & \text{Absorbed} \\ 0 & \text{Not} \end{cases} \]

Stoppage \[S = \int \rho(\gamma(s))ds \]

Problem: Different physics for stoppage Than scattering. Can We really combine data?

Model \[P[Z = 1 \mid S = s, E = e] = G(s - e) \]

Are planning experiments to estimate H

\[P[Z = 1 \mid S = s] = \int G(s - e)F(de) = H(s) \]

Nice little inverse problem
Knock off electrons and Bremsstrahlung confuses the drift tubes (~5%)
Modeling Muon Scattering

Data from scattered muons:
- Change in position \(\Delta x \)
- Change in angle \(\Delta \theta \)

Inverse problem with the signal in the variance

\[
E[\Delta \theta] = E[\Delta x] = 0
\]

\[
Var[\Delta \theta] \propto \frac{1}{p^2} \frac{L}{L_{\text{rad}}}
\]

Material specific parameter \(\lambda \)

Momentum (unknown)
Point of Closest Approach (PoCA)

Original Approach (2003)

Assumes that the scattering took place at the point where the incoming and outgoing paths come closest.
Slices through reconstructed volume
Ray-crossing algorithm cuts clutter

No contraband

3 uranium blocks (20 kg each)

10 tons of distributed iron filling the container
Clustering algorithms to automatically search for dense objects

- Look at significantly scattered muons
- If high-Z object present, inferred locations of scattering will “cluster”
- Cluster centroids are considered the candidate locations for a threat object, and passed to a classifier

Input to simulation:
Shipping container full of automobile differentials & one uranium sphere

Identified clusters, including the real one
Candidate clusters can be tested with a “machine-learned” algorithm

Breakthrough: Algorithm has found a good set of features based on statistics of a local, 27-voxel cube

Result: Low error rates for two-minute exposures
Single layer model

Observations: \((\theta_i, \Delta \theta_i, \Delta x_i)\). Conditionally on \(\theta_i = 0\),

\[
D_i = \begin{pmatrix} \Delta \theta_i \\ \Delta x_i \end{pmatrix} \sim \mathcal{N} \left(0, \frac{\lambda}{p^2} \begin{pmatrix} \frac{L}{2} & \frac{L^2}{2} \\ \frac{L^3}{3} & \frac{L^2}{2} \end{pmatrix} \right).
\]

If \(\theta_i \neq 0\), distribution of \(D_i|\theta_i\) is approximatively mean zero Gaussian with variance-covariance

\[
\frac{\lambda}{p^2} \begin{pmatrix} \frac{L \tan \theta_i}{2} & \frac{(L \tan \theta_i)^2}{2} \\ \frac{(L \tan \theta_i)^2}{3} & \frac{(L \tan \theta_i)^3}{2} \end{pmatrix} = \frac{\lambda}{p^2} \Sigma_{\theta_i}
\]

- Parameter \(\lambda\) specific of material.
- Site specific distribution of momentum \(p\) known.

\text{Model path as an integrated Brownian motion}
An Identifiability Surprise

\[\Delta \theta = \sum_j \Delta \theta_j \quad \Delta x = \sum_j \Delta x_j + R_j \Delta \theta_j \]

\[E[\Delta \theta_j] = E[\Delta x_j] = 0 \]

Lemma 1: Parameter identifiable if three or less homogeneous layers.

Lemma 2: In voxelized volume, parameters are identifiable.

Function of the path length in each layer