March 24, 2004

Fair Haven, New Jersey 07704 USA
18 Clay Street
Antiope Associates

Piscataway, New Jersey 08854 USA
Rutgers University
WINLAB

Christopher Rose

ET Might Write Not Radiate
Interference Avoidance, Pricing & Spectrum Management

- How good can that RF channel be? Really good!

Channel Quality

- Interference hurts ⇒ deal with it!

Delay Tolerant? Transmit when near base!

Infostations:

- Infostations redux (Infostations redux)

WINLAB

C. Rose

DIMACS Series 3/24/04
RF Interference is bad
Storage density is increasing
Can tolerate delay
Channel good when nearby
Forget RF! Write message down! Toss it to recipient!

An Epiphany!
And maybe a LOT more room at the bottom

RNA: 3.6 × 10²⁴ bits/kg

STM with Xe on Ni: 1.74 × 10²² bits/kg

E-beam Lithography with SiO₂: 1.54 × 10²¹ bits/kg

Optical Lithography with SiO₂: 3.85 × 10¹⁸ bits/kg

A Little Empirical Rigor
A Little Analytic Rigor
\[(\Lambda)\eta \geq [(\Lambda)\eta] \mathcal{E}\]

If convex (Jensen):

\[[(\Lambda)\eta] \mathcal{E} = (\Lambda)\eta \max^\Lambda\]

If deterministic:

\[[(\Lambda)\eta] \mathcal{E} \leq (\Lambda)\eta \max^\Lambda\]

Max bigger than mean:
with equality iff \(\lambda(1) \) is constant

\[
\begin{align*}
\lambda y & \leq \left[\left((1) \lambda \right) y \right]^\lambda \min \left(\lambda \right) \leq \left((1) \lambda \right) y^\lambda \min \left(\lambda \right) \max = \mathcal{E} \\
\end{align*}
\]

Jensen says

\[
\frac{1}{D} = \lambda \\
\]

subject to \(\lambda \)

\[
\left((1) \lambda \right) y^\lambda \min \left(\lambda \right) \max = \mathcal{E} \\
\]

Minimum imparted energy

\[
\begin{align*}
\left((1) \lambda \right) \mathcal{E} = \lambda = \frac{1}{D} = Tp(1) \lambda \int_{\lambda}^{1} \frac{1}{1} \\
\end{align*}
\]

Average velocity

\[
\text{Rocket Science} \\
\]

Where Not Radiate
\[
\frac{\gamma \mu \omega}{\lambda I} \approx \mathcal{E}
\]

\[
\left(1 - \frac{\gamma \left(\frac{c}{\omega} - 1\right)}{I}\right) \gamma \omega m = \mathcal{E}
\]

\[
\left(1 - \frac{\frac{\omega^2}{c^2} - 1}{I}\right) \gamma \omega m = (\Lambda)\eta \quad \bullet
\]

\[
(\Lambda)\eta = \mathcal{E}
\]

\[
\Delta \text{ and } (\Lambda)\eta \text{ GIVEN} \quad \bullet
\]

Minimum Transport Energy
\[0 = (x)_{,b} - (x)_{,b}x \]

\[0 = \frac{x}{\mathcal{E}} - \left(\frac{x}{\mathcal{E}} \right) \frac{p}{p} \]

\[\text{Calculus of variations:} \]

\[1p(1)\mathcal{E} \int_{\frac{1}{2}}^{1} x \left(\min \max_{\text{min}} \right) \mathcal{E} = \mathcal{E} \]

\[\text{Energy minimization:} \]

\[((1)x)b + ((1)\lambda)y = (1)\mathcal{E} \]

\[\text{Potential energy:} (x)b \]
Non-relativistic:

\[m \ddot{x} = q \times x \]

is force at position \(x \):

\((x) \cdot p \)

\(\text{max} \)

Potential Field Results

Fictitious? \(\text{constant} = \langle 1 \rangle \cdot \mathcal{E} \text{ constant} \)

Freefall? \(\text{constant} = \langle 1 \rangle \cdot \mathcal{E} \text{ constant} \)

\(\text{Free fall} \leftarrow \text{force at position } x = \langle x \rangle \cdot \mathcal{E} \text{ constant} \)

\(\text{max} \)
Potential Field Results

- Low speed:
 - $q'(x)$ is force at position x: \(\rightarrow \text{"free fall"} \)
 - $E(t)$ constant \rightarrow minimization satisfied with equality, so...
 - $\dot{m} \ddot{x} = q'(x)$
 - Freefall? $\rightarrow E(t)$ constant
Pay a factor of 2 over free space

\[\frac{g^8}{2^{\sqrt{c^2}}} = \gamma \]

Delay at minimum energy

- \(g \ll 1 \) low speed
- \(g \approx 1 \) \(\sim \) near light speed

Let \(g = \frac{c^2}{D} \)

\[\frac{c^2}{D} \]

Minimum energy

Artillery Problem
Escape Problem

- Milky Way: $v > 6 \times 10^7$
- Solar: $v > 7.1 \times 10^3$
- Earth: $v > 2.7 \times 10^4$

Escape examples (rough):

- Some energy penalty (but not a lot)
- Boils down to: need initial velocity larger than escape.
- Needs numerical calculation

Needs numerical calculation
We'll ignore relativity

Low speed ain't slow!

Off by only 10% at 0.4c and 50% at 0.75c

\[
\frac{d}{B} \approx \frac{\mu}{M}
\]

\[
\left(1 - \frac{v}{c}^2 \frac{\sqrt{1 - \frac{v^2}{c^2}}}{\sqrt{1 - \frac{1}{\sqrt{M}}}}\right) \frac{d}{B} = \frac{\mu}{M}
\]

General

Message size \(B \), mass information density \(\rho \)

Inscribed Matter Energy Requirements
\[1 + \frac{W^0\sqrt{\frac{4\pi D}{AC}}}{\nu} \ln 2 \geq 2 \left[1 - \frac{B}{W^L} \right] \frac{B}{W^L} \frac{4\pi D}{AC} = E' \]

Bits a la Shannon:

\[\frac{4\pi D}{AC} \approx (D)^\wedge \]

Energy capture

Large TLW:

\['t_p = E' \]

WinLab 3/24/04

C. Rose

DIMACS Storage
\[
\left(\frac{2 \ln 2}{\Omega} \right) \left[\frac{AV}{4nD} \right] \left[\frac{\tau^2}{P_0 N} \right] < \Omega
\]

Large TW, \(\delta \ll 1 \)

\[
\frac{\ell_m}{\ell} = \Omega
\]

Definition:

\textbf{Radiation to Transport Energy Ratio}
No, inscriptional matter still wins!

\[
R = 10^6 \text{LY} \times 2.7 \times 10^{16} \text{stars} \quad \text{(but } N = 10^{32})
\]

\[
R = 10^4 \text{LY} \times 2.7 \times 10^{10} \text{stars} \quad \text{(but } N = 10^{28})
\]

Spherical galaxy, isotropic radiation, Arecibo-Arecibo

Milky Way stellar density 6.4 \times 10^{-3} \text{ stars (LY)}^{-3}

Radiation illuminates many → matter penalty

Is Radiation Better for Broadcast?
Construction energy not a problem

- E^* at earth escape: $1.68 \times 10^{-17} \text{ J/bit}$
- $6.2 \times 10^{-17} \text{ J/bit}$ per ATP molecule
- $8 \times 10^{-20} \text{ ATP/second}$ for 20 minutes: 4639 Kbase of E-coli

Empirical energy calc:

- Landauer's said it can be reversible and arbitrarily fast

Matter Inscription/Readout Energy and Time

Does Inscription Energy/Speed Eat Budget?
\[N \leftarrow 6666.0 = \Phi \]
\[000 = N \leftarrow 66.0 = \Phi \]

Now many repetitions optimally placed? \[1 \geq \Phi \geq 0 \] per year

Success criterion: \[\Phi \geq 0 \]

Civilization Extinction Rate: \[\beta = 1/10^8 \]

Civilization Birth Rate: \[\alpha = 1/10^9 \]

Radiation Needs Repetition

Write Not Radiate
Delivery Methods

- Onward toward Lagrangian finge
- Probe (Bracewell)
- Embedded dust & rock (comet)?
- Dust?
- Big rock?
Delivery Methods (more detail)

- Need exhaust braking
- Energy penalty (excess mass): \(e \)
- \(I_{sp} = \) Specific Impulse
 - Chemical: \(10^2 \)
 - Nuclear Electric: \(10^4 \)
 - Fusion: \(10^6 \)
- \(I_{sp} = 20,000 \), \(\delta = 1000 \rightarrow \text{penalty} 4.6 \)
- \(\delta = 100 \) or \(I_{sp} = 2000 \rightarrow \text{penalty} 4.4 \times 10^6 \)
Cosmic Insults

Insults:
– High energy particle bombardment
– Heating (diffusion)
– Ion tracks, dislocations, subatomic cascades

Shielding:
– 10 million years at 10% bacteriaviability: 3 in radius rock
– 3.4 × 10^6 penalty
(36 cm^-3 density)

Clever Composition, Coding and Correction:
– Write Not Radiate

WINLAB
C. Rose
DIMACS Storage 3/24/04
Inscribed matter messaging is not ridiculous

Inscribed matter messaging might often be preferred

Questions for storage types:
- General theory of inscribed matter storage?
- Composition and Coding for survivability?
- Ease of decoding (obviousness)?
- Inscribed matter messaging might often be PREFERRED

Inscribed matter messaging is NOT ridiculous

PUNCHLINES

http://www.winlab.rutgers.edu/~crose/cgi-bin/cosmic4.html

Learn more: