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Data Streams
Many large sources of data are generated as 

streams of updates:

–IP Network traffic data

–Text: email/IM/SMS/weblogs

–Scientific/monitoring data

Must analyze this data which is high speed (tens of 
thousands to millions of updates/second) and 
massive (gigabytes to terabytes per day)



Data Stream Analysis
Analysis of data streams consists of two parts:

� Summarization

–Fast memory is much smaller than data size, so 
need a (guaranteed) concise synopsis

–Data is distributed, so need to combine synopses

� Mining

–Extract information about streams from synopsis

–Examples: Heavy hitters/frequent items, 
changes/difference, clustering/trending, etc.



Skew In Data

Such skew is prevalent in 
network data, word frequency, 
paper citations, city sizes, etc.

One concept, many names: Zipf 
distribution, Pareto distribution, 
Power-laws, multifractals, etc.
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Zipf Distribution
Items drawn from a universe of size U

Draw N items, frequency of i’th most frequency is

fi ≈ Ni-z

Proportionality constant depends on U, z, not N

z indicates skewness: 

–z =0: Uniform distribution

–z < 0.5: light skew/no skew

–0.5 " z < 1:moderate skew

–1 " z: (highly) skewed } most real data 
in this range



Typical Skews

1.4 — 1.6Depth of website 
exploration

1.1 — 1.3Word use in 
English text

0.9 — 1.1FTP Transmission 
size

0.7 — 0.8Web page 
popularity

Zipf skewness, zData Source



Our contributions
A simple synopsis used to approximately answer:

� Point queries (PQ) — given item i, return how 
many times i occurred in the stream, fi

� Second Frequency moment (F2) — compute sum 
of squares of frequencies of all items 

The basis of many mining tasks: histograms, 
anomaly detection, quantiles, heavy hitters

Asymptotic improvement over prior methods: 
for error bound ε, space is o(1/ε) for z>1
previously, cost was O(1/ε2) for F2, O(1/ε) for PQ



Point Estimation

Use the CM Sketch structure, introduced in 
[CM04] to answer point queries with error <εN
with probability at least 1-δ

Tighter analysis here for skewed data, plus new 
analysis for F2.

Ingredients: 

–Universal hash fns 
h1..hlog 1/δ {items}� {1..w}

–Array of counters CM[1..w, 1..log 1/δ]
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Analysis for Point Queries
Split error into:

–Collisions with w/3 largest items

–Collisions with the remaining items

With constant probability (2/3), no large items 
collide with the queried point. 

Expected error

Applying Zipf tail bounds and setting w = 3ε-1/z.

Markov Inequality: Pr[error > εN] < 1/3.

Take Min of estimates: Pr[error > εN] < 3-log 1/δ < δ



Application to top-k items
Can find fi with (1±ε) relative error for i<k 

(ie, the top-k most frequent items).

Applying similar analysis and tail bounds gives:

and so w = O(k/ε) for any z>1.

Improves the O(k/ε2) bound due to [CCFC02]

We only require z>1, do not need value of z.



Second Frequency Moment
Second Frequency Moment, F2 = ∑i fi2

Two techniques to make estimate from CM sketch:

� CM+: minj ∑k=1
w CM[j,k]2 

— min of F2 of rows in sketch

� CM-: medianj ∑k=1
w/2 (CM[j,2k] – CM[j,2k-1])2

— median of F2 of differences of adjacent 
entries in the sketch

We compare bounds for both methods.



CM+ Analysis
With constant probability, the largest w1/2 items all 

fall in different buckets.  For z>1:



CM+ Analysis
Simplifying, we set the expected error = ½εF2.

This gives w = O(ε-2/(1+z)).

Applying Markov inequality shows error is at most
εF2 with constant probability.

Taking the minimum of the log 1/δ repetitions 
reduces failure probability to δ.

Total space cost = O(ε-2/(1+z) log 1/δ), provided z>1



CM- Analysis
For z>1/2, again constant probability that the 

largest w1/2 items all fall in different buckets.

We show that:

–Expectation of each CM- estimate is F2

–Variance " 8F2
2 w-(1-2z)/2

Setting Var = ε2 F2
2 and applying Chebyshev 

bound gives constant probability of < εF2 error.

Taking the median amplifies this to δ probability

Total cost space = O(ε-4/(1+2z) log 1/δ), if z>½  



F2 Estimation Summary
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Experiments: Point Queries

Max Error on Point Queries from Zipf(1.6)
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� On synthetic data, significantly outperforms worst 
error from comparable method [CCFC02]

� Error decays as space increases, as predicted



Experiments: F2 Estimation

� Experiments on complete works of Shakespeare 
(5MB, z≈1.2) and IP traffic data (20MB, z≈1.3)

� CM- seems to do better in practice on real data.

F2 Estimation on Shakespeare
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F2 Estimation on IP Request Data
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Experiments: Timing
Easily process 2-3million new items / second on 

standard desktop PC.

Queries are also fast 

– point queries ≈ 1µs

– F2 queries ≈ 100µs

Alternative methods are at least 40-50% slower.



Conclusions
By taking account of the skew inherent in most 

realistic data sources, can considerably improve 
results for summarizing and mining tasks.

Similar analysis is of interest for other mining 
tasks, eg. inner product / join size estimation.

Other structured domains: hierarchical domains, 
graph data etc. 


