Environment: Directions and Issues

Examples:

- decision support in natural resource management (efficient forestry, mining, wildfires, etc)

- decision support in conservation (wildlife corridors, reserve planning)

- computational theory to aid ecological sciences (large data sets on species presence/absence, clustering/classification)
Environment: Directions and Issues

- Working with scientific data:
 how to gather it, how to optimize with it
Environment: Directions and Issues

- **Working with scientific data:**
 how to gather it, how to optimize with it

- What data has already been collected? ← use it first!

- High costs of acquiring new data?
 (simulation, field experiments)

- Sample/sample paths with spatial structure?

- Leverage knowledge about biological/ecological structure to
 specialize processes like adaptive sampling, optimal
 variance-reduction sampling, etc

- Conservation: generalize concepts of high-cost sampling
 (options expire while we plan)
Environment: Directions and Issues

- Evaluating and Engineering Robustness/Sensitivity:
 - of solutions
 - of methods
 - with respect to data
 - with respect to model assumptions (evolving science)
 - planning: climate change
Environment: Directions and Issues

- Evaluating and Engineering Robustness/Sensitivity:
 of solutions
 of methods
 with respect to data
 with respect to model assumptions (evolving science)
 planning: climate change

- Problem formulation:
 Understanding space of politically-viable policies
 Working within provence of receptive management agencies

- Understanding incentives:
 private/public partnerships
 feedback with peer-benchmarks
 lotteries to encourage good behavior
 public education and engagement