We prove two art gallery theorems in which the guards must guard one another in addition to the gallery. A set \mathcal{G} of points (the guards) in a simple closed polygon (the art gallery) is a guarded guard set provided (i) every point in the polygon is visible to some point in \mathcal{G}; and (ii) every point in \mathcal{G} is visible to some other point in \mathcal{G}. We prove that a polygon with n sides always has a guarded guard set of cardinality $\lceil (3n - 1)/7 \rceil$ and that this bound is sharp ($n \geq 5$); our result corrects an erroneous formula in the literature. We also use a coloring argument to give an entirely new proof that the corresponding sharp function for orthogonal polygons is $\lceil n/3 \rceil$ for $n \geq 6$; this result was originally established by induction by Hernández-Peñalver.