Joint Speed Scaling and Sleep Management for Power Efficient Computing

Yanpei Liu 1 Aman Chadha 1 Stark C. Draper 2 Nam Sung Kim 1

1Electrical and Computer Engineering
University of Wisconsin Madison

2Electrical and Computer Engineering
University of Toronto

DIMACS Workshop on Algorithms for Green Data Storage
Dec 18, 2013
Acknowledgment

- Murali Annavaram (University of Southern California)
- Ken Vu (IBM)
- Srinivasan Ramani (IBM)
- Thomas Wenisch (University of Michigan Ann Arbor)
Motivating facts

DIMACS Workshop on Algorithms for Green Data Storage
Two important power control methods.

- Speed scaling and low-power states.
- Are often exploited in separation.
 - Speed scaling: [GH01][ALW10][DMR11][BMB12].
 - ON/OFF: [MGW09][GHA10][N11].
- Should be jointly optimized, managed and operated.

\[C_0(i) \quad \text{Operating idle state: there is no work to do, voltage & frequency held constant at last DVFS setting} \]
\[C_1 \quad \text{Halt state: clock stops} \]
\[C_3 \quad \text{Sleep state: cache flushed, architectural state maintained, clock stopped} \]
\[C_6 \quad \text{Deep sleep state: architectural state saved to RAM, voltage set to zero} \]
Challenges

Challenge 1:

- Suppose we have a low utilization server.
- Given two low-power states in idle:
 - **Shallow sleep**: quick wake up and power hungry.
 - **Deep sleep**: slow wake up and power efficient.

- **If the response time must be kept low, shallow sleep or deep sleep?**
- **If the response time is okay to be high, shallow sleep or deep sleep?**

Challenge 2:

- Suppose a CPU has many low-power states.

- **Should we concatenate then all?**
Queuing-theoretic analysis

- Model a single server as $M/G/1$ queue. Arrival rate λ, operating frequency $f \in [0, 1]$ (DVFS), service rate μf and utilization $\rho = \lambda / \mu$.
- When busy, run at frequency f, incurring power $P_0 f^3 + C$.
 - Example: $P_0 = 130$ Watts and $C = 112$ Watts.
- When idle: enter n low-power states.
 - The system enters ith low-power state τ_i seconds after its queue empties, $\tau_1 \leq \tau_2 \leq \tau_3 \ldots \leq \tau_n$.
 - Power at ith low power state is P_i, $P_1 > P_2 > \ldots > P_n$.
 - Wake-up latency is w_i (with power), $w_1 < w_2 < \ldots < w_n$.

\[
\begin{array}{cccc}
C0_{(i)} & C1 & C3 & C6 \\
\hline
- & - & - & - \\
0 s & 1-10 \mu s & 10-100 \mu s & 0.1-1 ms \\
- & - & - & 1-10 s \\
\end{array}
\]

- With $n = 1$, $f = 1$, $\tau_1 = 0$, it reduces to the well-known “race-to-halt” mechanism.
Theoretical results – power

- P_i: power at state i. τ_i: entrance delay for state i. w_i: wakeup latency for state i, f: frequency, μ: service rate and λ: arrival rate.

Theorem

The average power consumption for an $M/M/1$ single-server system with n low-power states is

$$
\mathbb{E}[P] = \frac{1}{\lambda L} \left[\sum_{i=1}^{n-1} P_i (e^{-\lambda \tau_i} - e^{-\lambda \tau_{i+1}}) + P_n e^{-\lambda \tau_n} \right] + P_0 \left(1 - \frac{e^{-\lambda \tau_1}}{\lambda L} \right) \tag{1}
$$

where L is defined as

$$
L = \frac{\mu f + \mu f \lambda \left[\sum_{i=1}^{n-1} w_i (e^{-\lambda \tau_i} - e^{-\lambda \tau_{i+1}}) + w_n e^{-\lambda \tau_n} \right]}{\lambda (\mu f - \lambda)} \tag{2}
$$
Theoretical results – mean response time

Theorem

The mean response time for an $M/M/1$ server system with n low power states is

$$\mathbb{E}[R] = \frac{1}{\mu f - \lambda} + \frac{2\mathbb{E}[D] + \lambda \mathbb{E}[D^2]}{2(1 + \lambda \mathbb{E}[D])},$$

(3)

where

$$\mathbb{E}[D] = \sum_{i=1}^{n-1} w_i (e^{-\lambda \tau_i} - e^{-\lambda \tau_{i+1}}) + w_n e^{-\lambda \tau_n},$$

(4)

$$\mathbb{E}[D^2] = \sum_{i=1}^{n-1} w_i^2 (e^{-\lambda \tau_i} - e^{-\lambda \tau_{i+1}}) + w_n^2 e^{-\lambda \tau_n}.$$

(5)
Theoretical results – deadline

Special case when $n = 1, \tau_1 = 0$.

Theorem

The probability for the response time to exceed a deadline $Pr(R \geq d)$ for an $M/M/1$ single-server is

$$Pr(R \geq d) = \frac{e^{-(\mu f - \lambda)d} - w_1(\mu f - \lambda)e^{-d/w_1}}{1 - w_1(\mu f - \lambda)}.$$

(6)
Engineering lesson I – low utilization

There exists optimal frequency f.

- Too fast causes power to increase. Too slow takes longer to finish.

The best power state depends on the response time constraint.

- Tight: deep sleep (blue). Loose: shallow sleep (red).

(a) DNS (194 ms): $\rho = \lambda/\mu = 0.1$.

(b) Google (4.2 ms): $\rho = \lambda/\mu = 0.1$.
Engineering lesson I – low utilization

Figure 1: Statistics of Google workload [MWW 12].

(c) Google inter-arrival time.
(d) Google service time.
Power saving comes mostly from performance scaling.

- Rarely enter low-power states.

Optimal policy is job size dependent.

- Large jobs can tolerate more wake up latency.
Engineering lesson III – best policies

- What do best policies look like at different utilization?

(c) Google $\mathbb{E}[R]$ constraint.

- No “one-size-fits-all” policy.
 - Different policies should be used under different utilization.

- “Bump” at low utilization
 - Caused by the slack in the quality-of-service.
Optimal performance scaling and entrance delay combination.

Sequential power throttle-back may be conservative.

- High utilization: rarely enters the last state. Low utilization, waste to not enter the optimal state.

(d) DNS (194 ms): delayed S3 at $\rho = 0.1$.
Conclusion

Thank you