Rapidly Deployable Wireless Networks for Emergency Communications & Sensing Applications
Sept 2003

Rutgers, The State University of New Jersey
www.winlab.rutgers.edu
Contact: Professor D. Raychaudhuri, Director
ray@winlab.rutgers.edu
INTRODUCTION
Rapidly Deployable Networks: Rationale

- Failure of communication networks is a critical problem faced by first responders at a disaster site
 - major switches and routers serving the region often damaged
 - cellular cell towers may survive, but suffer from traffic overload and dependence on (damaged) wired infrastructure for backhaul

- In addition, existing networks even if they survive may not be optimized for services needed at site
 - significant increase in mobile phone traffic needs to be served
 - first responders need access to data services (email, www,...)
 - new requirements for peer-to-peer communication, sensor net or robotic control at the site

- Motivates need for rapidly deployable networks that meet both the above needs -> recent advances in wireless technology can be harnessed to provide significant new capabilities to first responders....
Rapidly Deployable Networks: Wireless Technology

- Several wireless technology options have been available for the last ~10-20 yrs
 - mini cell stations using existing standards like CDMA or GSM
 - wireless PABX using PCS standards such as DECT or PHS/PACS
 - satellite and microwave backhaul
- Above solutions OK for voice & low-speed data, but do not meet emerging needs for broadband access and mobile data
- Emerging mainstream wireless technologies provide powerful building blocks for next-generation emergency response nets
 - WLAN (IEEE 802.11 “WiFi”) hot-spots for broadband access
 - Context-aware mobile data services and web caching for information services
 - Wireless sensor nets for monitoring and control
 - VOIP for integrated voice services over wireless data networks
Rapidly Deployable Wireless Network: Proposed Architecture

- Wired Infrastructure Network (Internet)
- Data cache
- WLAN Access Point
- Backhaul radio link
- “Infostation”
- Wireless Hot-Spot
- Broadband Service Zone
- Ad-hoc network extension
- Sensor clusters
- First responder communication and computing devices
- Medium-speed data and VOIP
Rapidly Deployable Networks: WINLAB Research Projects

- WINLAB has several projects on emerging wireless technologies directly applicable to rapid deployment....

- Infostations
 - “hot-spot” for facilitating complex information retrieval by first responders
 - may also be used for standard WLAN services in limited area

- Ad-hoc WLAN
 - Ad-hoc extensions to WLAN hot-spot service via multi-hop routing
 - WLAN data services (and VOIP) with increased coverage

- Sensor networks
 - Ad-hoc networks of radio sensors that integrate well with WLAN hot-spots as the “infrastructure”
 - Specialized services and applications with quality-of-service & energy constraints

- VOIP over wireless
 - Transport and control protocols for voice services over packet data networks, including specializations for wireless impairments

- Spectrum etiquette
 - Coordination techniques for easing “traffic jams” in dense wireless deployments
Infostations
Infostations: Service Concept

- Using radio hot-spots (WLAN, other...) to deliver context- and location-aware information to mobile users
 - adaptive operations include: detection of Infostation, adaptive bit-rate selection, dynamic association and opportunistic data delivery

Key technologies:
- Super high-speed short range modem
- MAC optimized for file transfer
- Opportunistic file delivery protocol

Infostations access point (supports caching and opportunistic delivery)

Internet/Intranet (high-speed)

Super high-speed access ~secs

Low-speed wide-area access
Infostations: Short-Range Radio Propagation

Results show that channel is well-behaved for distance ~5-10m → 100’s of Mbps achievable with OFDM, UWB or other modulations

(...802.11a adapting to max 54 Mbps can be used as a first approximation)

Scenario 1: Open Roadway With Trees

Measured data from Domazetovic & Greenstein [2001]
Infostations: MAC Protocol for Pass-Through Mode

- Mobile user passes through Infostation in sec during which ~MB files are downloaded/uploaded
 - Requires modifications to conventional WLAN MAC, including fast synch, pre-authentication, etc. (... related to interworking discussed before)
 - Motivates 2-tier arch with ~10m service zone (for high-speed data transfer) and ~50m access control zone (for sync, authentication, ...)

- Diagram showing Infostations access point, data cache, service zone, access control zone, and low-speed control channel for synch & service setup.

- Diagram notes:
 - Data cache
 - Infostations access point
 - Low-speed control channel
 - ~100 MB/s Fast transfer
 - Service Zone
 - Access Control Zone
 - Transit time ~sec
 - Total transit time ~10 sec
Infostations: Content Delivery

- XML-based content multicasting a possible option for delivering relevant info to mobiles...
 - Mobile users have “information profile” to set up service
 - Useful for building real-time, context- and location-aware services
 - User profile updated dynamically as location changes and link/terminal capabilities vary
 - QoS may be adjusted for each item of content delivered
Ad-Hoc Wireless & Sensor Networks
Emerging System Architecture: “network of wireless networks” concept

- Global Internet
- Wide-Area Radio Access Network A (includes mobility services, etc.)
- Wide-Area Radio Access Network B
- Wide-Area Radio Access Network C

- wired links
- radio link

- high-tier devices (mobile terminals)
- med-tier devices (laptops, PDA’s)
- low-tier devices (home, sensors)

- Microcellular Radio net
- Picocellular Radio net

- Ad-hoc sensor network at disaster site
- Ad-hoc emergency communications network
Ad-Hoc Nets: Self-Organizing Extensions to WLAN

- Opportunistic ad-hoc wireless networking concepts starting to mature...
 - Initial use to extend WLAN range in user-deployed networks
 - Based on novel auto-discovery and multi-hop routing protocols
 - Extends the utility and reach of low-cost/high speed WiFi equipment

![Diagram of ad-hoc networking concepts](image)
Ad-Hoc Nets: 3-Tier Hierarchy

- Hierarchical, self-organizing ad-hoc network for scalability and integration of low-tier sensor nets, etc. with WLAN & existing Internet services
 - 3 service tiers (cellular, WLAN, personal area/sensors)
 - BS’s, AP’s, FN’s (forwarding radio nodes), user devices
 - automatic discovery and power management protocols
 - hierarchical, ad-hoc multi-hop routing and spatial MAC
Ad-Hoc Networks:
Discovery and routing protocols

Protocols needed:
Ad-hoc discovery (enhanced beacons, etc.)
Ad-hoc network association
Ad-hoc network routing (extended metrics including energy)
handoff, QoS control, multicast (.features)

- ns-2 simulation model developed for capacity evaluation
 - ~1000 sensors in a 1Km**2 rectangular grid with 4 AP’s
 - Variable number of FN’s and AP’s as hierarchical infrastructure
 - Based on 802.11b radio PHY & MAC
 - Different kinds of routing protocols such as DSR & AODV and modifications

Fast Wired Network (100 Mbps Ethernet)

Sensor Network System Model

SIMULATION PARAMETERS

<table>
<thead>
<tr>
<th>Coverage Area</th>
<th>1000m X 1000m</th>
</tr>
</thead>
<tbody>
<tr>
<td># of clusters; SN’s; FN’s; AP’s</td>
<td>4; 100; 20; 4</td>
</tr>
<tr>
<td>Radio PHY; Radio range</td>
<td>1Mbps; 250m</td>
</tr>
<tr>
<td>MAC</td>
<td>Ad-hoc 802.11b</td>
</tr>
<tr>
<td>AP-AP link speed</td>
<td>100 Mbps</td>
</tr>
<tr>
<td># of communication pairs</td>
<td>40</td>
</tr>
<tr>
<td># of packets/s generated</td>
<td>1,4,8,12,16,24,32</td>
</tr>
<tr>
<td>Packet size</td>
<td>64 bytes</td>
</tr>
<tr>
<td>% of SN-Internet traffic</td>
<td>100%</td>
</tr>
</tbody>
</table>

Delay vs. throughput for 40 communication pairs
Sensor Devices
Sensor Devices: Background

- Integrated sensor/actuator + low-power microprocessor + radio
 - Single chip or compact module
 - Wireless networking
 - Energy efficient & low cost design

Applications of sensors include:
- Verticals: factory automation, security, military, logistics, …
- Horizontal market: smart office, home → pervasive computing
- Enables a variety of homeland security related applications: monitoring, disaster recovery, etc.

From the engineering perspective, a challenging new “convergence” device:
- Integrates computing, communication and sensing
- Different design goals: power, size, robustness
- Mixed-signal chip or module integration issues, MEMS
- New networking paradigms: ad-hoc, self-organizing
- Novel software models: data centric, opportunistic, collaborative
Sensor Devices: Hardware Architecture

- Sensor architecture considerations:
 - Need for unified system architecture/hardware design to balance functionality vs complexity/power
 - Single chip (SOC) or integrated module (SOP)

![Diagram of sensor devices hardware architecture]

Design Issues:
- Power consumption
- Radio bit-rate
- CPU speed
- Sensor multimodality
- Degree of integration
- Standards compatibility
- Cost
Sensor Devices: ZnO Materials for multimode operation

- “Tunable” ZnO sensor developed by Prof. Y. Lu at Rutgers/WINLAB
 - Can be “reset” to increase sensitivity, e.g. in liquids or gas
 - Dual mode (acoustic and UV optic)
 - Applicable to variety of sensing needs

Courtesy of: Prof Y. Lu, Rutgers U
Sensor Devices: Baseband Processor

- Low-power 802.11b + multimodal ZnO sensor under development at WINLAB....
 - Subset of 802.11b functionality for energy conservation
 - ARM RISC core
 - RF “wake-up” module, sensor interface, ..
Experimental Prototypes at WINLAB
Infostations Prototype: System for Rapid Deployment Applications

- Outdoor Infostations with radio backhaul
 - for first responders to set up wireless communications infrastructure at a disaster site
 - provides WLAN services and access to cached data
 - wireless backhaul link
 - includes data cache

- Project includes development of:
 - high-speed short-range radios
 - 802.11 MAC enhancements
 - content caching algorithm & software
 - hardware integration including solar panels, antennas and embedded computing device with WLAN card

WINLAB’s Outdoor Infostations Prototype (2002)
Infostations Prototype: “i-media system”

- WINLAB’s “i-media” prototype for media delivery over wireless networks
 - 802.11 WLAN AP with MAC optimizations
 - wired network interface (Ethernet, DSL,..)
 - on board processing & cache storage
 - XML-based content routing for information delivery services

- Project now moving to lab trials stage:
 - media service demonstrations with wireless service operators
 - military applications...
Ad-Hoc Wireless Network: WINLAB Prototype

A flexible, open-architecture ad-hoc WLAN and sensor network testbed has been developed...

- open-source Linux routers, AP’s and terminals (commercial hardware)
- Linux and embedded OS forwarding and sensor nodes (custom)
- radio link and global network monitoring/visualization tools
- prototype ad-hoc discovery and routing protocols
Ad-Hoc Net and Sensors: MUSE
Sensor Prototype

- “Multimodal” wireless sensor hardware being developed with NJCST funding...
 - novel ZnO materials for tunable sensors
 - integration with low-power wireless transceiver designs
 - focus on an integrated system-on-package or system-on-chip
 - integrated ad-hoc networking software (as outlined earlier)
 - sensor applications, including medical heart monitors, etc.

2002-04 target: Multi-chip module for sub-802.11b
Early medical applications at UMDNJ
2005-06 target: Single chip prototype
Pre-commercial applications w/ partners