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Sparse signal recovery

measurements
length m = k log(n)

k-sparse signal
length n



Problem statement

m as small
as possible

Construct

I Matrix A : Rn → Rm

I Decoding algorithm D

Assume x has
low complexity:
x is k-sparse
(with noise)

Given Ax for any signal x ∈ Rn, we can quickly recover x̂ with

‖x − x̂‖2 ≤ (1 + ε) min
y k−sparse

‖x − y‖2



Parameters

I Number of measurements m

I Recovery time

I Approximation guarantee (norms, mixed)

I One matrix vs. distribution over matrices

I Explicit construction

I Universal matrix (for any basis, after measuring)

I Tolerance to measurement noise



Paper Rand/
Det.

Sketch length Encode time Update time Recovery 
time

Approx.

[CCF’02][CM’06] R k log n n log n log n n log n l2/l2

[CM’04] R k log n n log n log n n log n l1/l1

[CRT’04]
[RV’05]

D k log(n/k) nk log(n/k) k log(n/k) nc l2/l1

D k logc n n log n k logc n nc l2/l1

[BGIKS’08] D k log(n/k) n log(n/k) log(n/k) nc l1/l1

[GLR’08] D k log logloglog(n) kn(1-a) n(1-a) nc l2/l1

[NV’07],[DM’08]
[NT’08]

D k log(n/k) nk log(n/k) k log(n/k) T nk log(n/k) l2/l1

D k logc n n log n k logc n T n log n l2/l1

[IR’08] D k log(n/k) n log(n/k)  log(n/k) n log(n/k) l1/l1

[CM’04] R k logc n n logc n logc n k logc n l1/l1

[CM’06] R k logc n n logc n logc n k logc n l2/l2

[GSTV’06]
[GSTV’07]

D k logc n n logc n logc n k logc n l1/l1

D k logc n n logc n k logc n k2 logc n l2/l1

Excellent Good Fair Poor

THIS TALK R k log(n/k) n log(n/k)loglog(k) log(n/k)loglog(k) k logc(n/k) l2/l2

poly(n) time 
algorithms

sublinear
 time algorithms



“For Each L2 Noise”

Our result:

I There exists a distribution on A and decoding algorithm D
such that

I For each x ,

I For most A,

‖x − x̂‖2 ≤ (1 + ε) min
y k−sparse

‖x − y‖2

Roughly:

I Recover “for each” noise vector in L2 ball.

I Compare to Donoho, Candès-Romberg-Tao: Recover “for all”
noise vectors in L1 ball.



Approximation Schemes

Goal:

I Get within factor (1 + ε) in fidelity

I Willing to pay factor 1/ε3 in runtime

What about number of measurements? To optimize, or cost of
fidelity?



Medical Imaging

Number of measurements = Θ(time patient holds breath)
Extra factor of “1000 · log(something)” unacceptable.

Disclaimers: This algo won’t work with Fourier measurements or
on sparse-gradient images.
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Pixel-Sparse MRIs

Increasingly, MRI’s are sparse in canonical (pixel) domain
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Overview
Our algorithm:

I Find a set of positions containing at least 3k/4 of top k
positions (and others)

I Estimate their values
I Get at most k/4 totally wrong
I Other estimates increase noise slightly—key invariant

I Subtract off and repeat for k/2

Estimation is easy; we focus on other aspects.

Geometric decrease k → k/2 pays for geometric tightening in noise
increase:

1→ (1 + 2 · 2/3)→ (1 + 2 · (2/3) + 2 · (2/3)2)→ · · · ≤ 5(→ 1 + ε)

and geometric tightening in failure probability

1/4→ (1/4 + 1/16)→ (1/4 + 1/16 + 1/64)→ · · · ≤ 1/3.
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Noise in L2

Multiply signal slotwise by known random ±1 before we start.

I Doesn’t permanently effect heavy hitters

I σ = ±1 random vector; ν is noise vector.

I What about
∑

j σjνj?

I E
[∑

j σjνj

]
= 0

I E

[∣∣∣∑j σjνj

∣∣∣2] =
∑

j ,k νjνkE [σjσk ] =
∑

j ν
2
j .

So
∣∣∣∑j σjνj

∣∣∣ ≈ ‖ν‖2.
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Heavy Hitter Size v. Noise

Scale so ‖noise‖2 = 1.
Ignore heavy hitters with energy ≤ cε/k ; altogether, degrade noise
from 1 to 1 + cε.
(Set c later...)



Hashing

Send each position into one of O(k) buckets, at random.

1 0 0 0 0
0 0 0 1 0
0 1 1 0 1




1
2
3
4
5



Accomplished by a matrix ...which is 1/k sparse
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Hashing, results

Get around 3k/4 buckets with:

I Exactly one fresh heavy hitter

I Around n/k total positions

I Noise contribution 1
k ‖ν‖

2
2.

I small compared with energy of heavy hitter

Reduced to 1-sparse signal of length ≈ n/k .



1-Sparse Signal of length n/k

Ideally, recover bit-by-bit. E.g.,

Combinatorial decoding: bit-testLocating a Heavy Hitter

! Suppose the signal contains one “spike” and no noise

! log2 d bit tests will identify its location, e.g.,

B1s =




0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1









0
0
1
0
0
0
0
0





=




0
1
0




MSB

LSB

bit-test matrix · signal = location in binary

One Sketch for All (MMDS 2006) 18
But:

I Constant fraction of measurements may be wrong!

Solution: Use “good” ECC...

I Tolerate constant fraction of errors

I Blow up length by constant factor only

I Use appropriate blocksize; exhaustive algorithms are efficient.



Iterate...

First iteration:

I # heavy hitters: k → k/2.

I Noise energy: 1 to 1 + 2 · 2/3

I Failure probability 1/4.

Repeat for (k/2)-sparse signal.



Iterate...

Repeat for (k/2)-sparse signal.
j ’th iteration:

I Sparsity: k/2j to k/2j+1

I Noise: 5− 2 · (2/3)j to 5− 2 · (2/3)j+1

I Failure prob: 1/3− 1/4j to 1/3− 1/4j+1

Cost:(
k

2j

)
log

(
d · 2j

k

)(
3

2

)j

log
(
4j
)

= k log

(
d

k

)(
3

4
+ o(1)

)j

.

Summable over j.
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Summary

For each x , with high probability,

‖x − x̂‖2 ≤ (1 + ε) min
y k−sparse

‖x − y‖2.

I x̂ = D(Ax).

I A has O(k log(n/k)) rows (and is ≈ 1/k sparse)

I D runs in time k poly(log(n)).


