Euclidean Sparse Recovery with Optimal
Measurement

(in progress)

Joint work with A. C. Gilbert (Mich.), Y. Li (Mich.), and E. Porat (Bar llan)

Sparse signal recovery

k-sparse signal
length n

measurements
length m = k log(n)

OEECOEECE

Problem statement

m as small
as possible

ONECERCN

Construct
» Matrix A: R?” — R™
» Decoding algorithm D

Assume x has
low complexity:
x is k-sparse
(with noise)

Given Ax for any signal x € R”, we can quickly recover x with

[x=X2<(1+¢) min [x—y|>
y k—sparse

Parameters

Number of measurements m

Recovery time

Approximation guarantee (norms, mixed)
One matrix vs. distribution over matrices
Explicit construction

Universal matrix (for any basis, after measuring)

vV V.V vV v VY

Tolerance to measurement noise

Rand/ Recov

[CCF02][CM06]

poly(n) time

algorithms

sublinear
time algorithms

“For Each L2 Noise”

Our result:

» There exists a distribution on A and decoding algorithm D
such that

» For each x,
» For most A,

[x=Xl2<(1+¢€) min [x—y|>
y k—sparse

Roughly:
» Recover “for each” noise vector in L2 ball.

» Compare to Donoho, Candés-Romberg-Tao: Recover “for all”
noise vectors in L ball.

Approximation Schemes

Goal:
» Get within factor (1 + ¢€) in fidelity
» Willing to pay factor 1/¢3 in runtime

What about number of measurements? To optimize, or cost of
fidelity?

Medical Imaging

Number of measurements = ©(time patient holds breath)
Extra factor of “1000 - log(something)” unacceptable.

Medical Imaging

Number of measurements = ©(time patient holds breath)
Extra factor of “1000 - log(something)” unacceptable.

Disclaimers: This algo won't work with Fourier measurements or
on sparse-gradient images.

Pixel-Sparse MRIs

Increasingly, MRI's are sparse in canonical (pixel) domain

Overview
Our algorithm:

» Find a set of positions containing at least 3k/4 of top k
positions (and others)
» Estimate their values
» Get at most k/4 totally wrong
» Other estimates increase noise slightly—key invariant
» Subtract off and repeat for k/2

Estimation is easy; we focus on other aspects.

Overview
Our algorithm:

» Find a set of positions containing at least 3k/4 of top k
positions (and others)
» Estimate their values

» Get at most k/4 totally wrong
» Other estimates increase noise slightly—key invariant

» Subtract off and repeat for k/2

Estimation is easy; we focus on other aspects.
Geometric decrease k — k/2 pays for geometric tightening in noise
increase:

1 (142-2/3) = (1+2-(2/3) +2-(2/3)2) = --- < 5(— L +¢)
and geometric tightening in failure probability

1/4 — (1/4+1/16) — (1/4+1/16 +1/64) — --- < 1/3.

Noise in L2

Multiply signal slotwise by known random +1 before we start.

» Doesn't permanently effect heavy hitters

Noise in L2

Multiply signal slotwise by known random +1 before we start.
» Doesn't permanently effect heavy hitters

» o = +1 random vector; v is noise vector.

Noise in L2

Multiply signal slotwise by known random +1 before we start.
» Doesn't permanently effect heavy hitters
» o = +1 random vector; v is noise vector.
» What about }; o;1;7?

Noise in L2

Multiply signal slotwise by known random +1 before we start.
» Doesn't permanently effect heavy hitters
» o = +1 random vector; v is noise vector.
» What about }; o;1;7?

» £ [ZJUJVJ} =0

Noise in L2

Multiply signal slotwise by known random +1 before we start.
» Doesn't permanently effect heavy hitters
» o = +1 random vector; v is noise vector.
» What about }; o;1;7?

» £ [ZJUJVJ} =0

2
> £ Uzjaﬂ/j' } = >k vivkElojor] = 3 VJ-Z.

Noise in L2

Multiply signal slotwise by known random +1 before we start.
» Doesn't permanently effect heavy hitters
» o = +1 random vector; v is noise vector.
» What about }; o;1;7?

> E[ZJUJVJ} =0
2
> £ Uzjaﬂ/j' } = >k vivkElojor] = 3 VJ-Z.

So |33, o] ~ Il

Heavy Hitter Size v. Noise

Scale so ||noisel|2 = 1.

Ignore heavy hitters with energy < ce/k; altogether, degrade noise
from 1 to 1 + ce.

(Set c later...)

Hashing

Send each position into one of O(k) buckets, at random.

o O =
= O O
= O O
o = O
= O O
OB~ W N

Hashing

Send each position into one of O(k) buckets, at random.

1
1 00 00 2
0 0010 3
01101 4
5

Accomplished by a matrix

Hashing

Send each position into one of O(k) buckets, at random.

1
1 00 00 2
0 0010 3
01101 4
5

Accomplished by a matrix ...which is 1/k sparse

Hashing, results

Get around 3k /4 buckets with:
» Exactly one fresh heavy hitter
» Around n/k total positions

» Noise contribution %||v/[|3.
» small compared with energy of heavy hitter

Reduced to 1-sparse signal of length ~ n/k.

1-Sparse Signal of length n/k

Ideally, recover bit-by-bit. E.g.,

bit-test matrix - signal = location in binary

But:

» Constant fraction of measurements may be wrong!
Solution: Use “good” ECC...

» Tolerate constant fraction of errors

» Blow up length by constant factor only

» Use appropriate blocksize; exhaustive algorithms are efficient.

lterate...

First iteration:
> # heavy hitters: k — k/2.
» Noise energy: 1to1+2-2/3
» Failure probability 1/4.
Repeat for (k/2)-sparse signal.

lterate...

Repeat for (k/2)-sparse signal.
j'th iteration:

» Sparsity: k/2/ to k/2+1
» Noise: 5—2-(2/3) to 5 —2-(2/3)*!
» Failure prob: 1/3 —1/4 to 1/3 — 1/4/*!

lterate...

Repeat for (k/2)-sparse signal.
j'th iteration:

» Sparsity: k/2/ to k/2+1

» Noise: 5—2-(2/3) to 5 —2-(2/3)*!

» Failure prob: 1/3 —1/4 to 1/3 — 1/4/*!
Cost:

({2 Q-

Summable over j.

d

k

)(

3

4

+ o(l)>j.

Summary

For each x, with high probability,

[x =X[l2<(1+¢€) min |x—y|>.
y k—sparse

» X = D(Ax).
» A has O(klog(n/k)) rows (and is ~ 1/k sparse)
» D runs in time k poly(log(n)).

