
Euclidean Sparse Recovery with Optimal
Measurement

(in progress)

Martin J. Strauss

University of Michigan

Joint work with A. C. Gilbert (Mich.), Y. Li (Mich.), and E. Porat (Bar Ilan)

Sparse signal recovery

measurements
length m = k log(n)

k-sparse signal
length n

Problem statement

m as small
as possible

Construct

I Matrix A : Rn → Rm

I Decoding algorithm D

Assume x has
low complexity:
x is k-sparse
(with noise)

Given Ax for any signal x ∈ Rn, we can quickly recover x̂ with

‖x − x̂‖2 ≤ (1 + ε) min
y k−sparse

‖x − y‖2

Parameters

I Number of measurements m

I Recovery time

I Approximation guarantee (norms, mixed)

I One matrix vs. distribution over matrices

I Explicit construction

I Universal matrix (for any basis, after measuring)

I Tolerance to measurement noise

Paper Rand/
Det.

Sketch length Encode time Update time Recovery
time

Approx.

[CCF’02][CM’06] R k log n n log n log n n log n l2/l2

[CM’04] R k log n n log n log n n log n l1/l1

[CRT’04]
[RV’05]

D k log(n/k) nk log(n/k) k log(n/k) nc l2/l1

D k logc n n log n k logc n nc l2/l1

[BGIKS’08] D k log(n/k) n log(n/k) log(n/k) nc l1/l1

[GLR’08] D k log logloglog(n) kn(1-a) n(1-a) nc l2/l1

[NV’07],[DM’08]
[NT’08]

D k log(n/k) nk log(n/k) k log(n/k) T nk log(n/k) l2/l1

D k logc n n log n k logc n T n log n l2/l1

[IR’08] D k log(n/k) n log(n/k) log(n/k) n log(n/k) l1/l1

[CM’04] R k logc n n logc n logc n k logc n l1/l1

[CM’06] R k logc n n logc n logc n k logc n l2/l2

[GSTV’06]
[GSTV’07]

D k logc n n logc n logc n k logc n l1/l1

D k logc n n logc n k logc n k2 logc n l2/l1

Excellent Good Fair Poor

THIS TALK R k log(n/k) n log(n/k)loglog(k) log(n/k)loglog(k) k logc(n/k) l2/l2

poly(n) time
algorithms

sublinear
 time algorithms

“For Each L2 Noise”

Our result:

I There exists a distribution on A and decoding algorithm D
such that

I For each x ,

I For most A,

‖x − x̂‖2 ≤ (1 + ε) min
y k−sparse

‖x − y‖2

Roughly:

I Recover “for each” noise vector in L2 ball.

I Compare to Donoho, Candès-Romberg-Tao: Recover “for all”
noise vectors in L1 ball.

Approximation Schemes

Goal:

I Get within factor (1 + ε) in fidelity

I Willing to pay factor 1/ε3 in runtime

What about number of measurements? To optimize, or cost of
fidelity?

Medical Imaging

Number of measurements = Θ(time patient holds breath)
Extra factor of “1000 · log(something)” unacceptable.

Disclaimers: This algo won’t work with Fourier measurements or
on sparse-gradient images.

Medical Imaging

Number of measurements = Θ(time patient holds breath)
Extra factor of “1000 · log(something)” unacceptable.

Disclaimers: This algo won’t work with Fourier measurements or
on sparse-gradient images.

Pixel-Sparse MRIs

Increasingly, MRI’s are sparse in canonical (pixel) domain

Pixel-Sparse MRIs

Increasingly, MRI’s are sparse in canonical (pixel) domain

Overview
Our algorithm:

I Find a set of positions containing at least 3k/4 of top k
positions (and others)

I Estimate their values
I Get at most k/4 totally wrong
I Other estimates increase noise slightly—key invariant

I Subtract off and repeat for k/2

Estimation is easy; we focus on other aspects.

Geometric decrease k → k/2 pays for geometric tightening in noise
increase:

1→ (1 + 2 · 2/3)→ (1 + 2 · (2/3) + 2 · (2/3)2)→ · · · ≤ 5(→ 1 + ε)

and geometric tightening in failure probability

1/4→ (1/4 + 1/16)→ (1/4 + 1/16 + 1/64)→ · · · ≤ 1/3.

Overview
Our algorithm:

I Find a set of positions containing at least 3k/4 of top k
positions (and others)

I Estimate their values
I Get at most k/4 totally wrong
I Other estimates increase noise slightly—key invariant

I Subtract off and repeat for k/2

Estimation is easy; we focus on other aspects.
Geometric decrease k → k/2 pays for geometric tightening in noise
increase:

1→ (1 + 2 · 2/3)→ (1 + 2 · (2/3) + 2 · (2/3)2)→ · · · ≤ 5(→ 1 + ε)

and geometric tightening in failure probability

1/4→ (1/4 + 1/16)→ (1/4 + 1/16 + 1/64)→ · · · ≤ 1/3.

Noise in L2

Multiply signal slotwise by known random ±1 before we start.

I Doesn’t permanently effect heavy hitters

I σ = ±1 random vector; ν is noise vector.

I What about
∑

j σjνj?

I E
[∑

j σjνj

]
= 0

I E

[∣∣∣∑j σjνj

∣∣∣2] =
∑

j ,k νjνkE [σjσk] =
∑

j ν
2
j .

So
∣∣∣∑j σjνj

∣∣∣ ≈ ‖ν‖2.

Noise in L2

Multiply signal slotwise by known random ±1 before we start.

I Doesn’t permanently effect heavy hitters

I σ = ±1 random vector; ν is noise vector.

I What about
∑

j σjνj?

I E
[∑

j σjνj

]
= 0

I E

[∣∣∣∑j σjνj

∣∣∣2] =
∑

j ,k νjνkE [σjσk] =
∑

j ν
2
j .

So
∣∣∣∑j σjνj

∣∣∣ ≈ ‖ν‖2.

Noise in L2

Multiply signal slotwise by known random ±1 before we start.

I Doesn’t permanently effect heavy hitters

I σ = ±1 random vector; ν is noise vector.

I What about
∑

j σjνj?

I E
[∑

j σjνj

]
= 0

I E

[∣∣∣∑j σjνj

∣∣∣2] =
∑

j ,k νjνkE [σjσk] =
∑

j ν
2
j .

So
∣∣∣∑j σjνj

∣∣∣ ≈ ‖ν‖2.

Noise in L2

Multiply signal slotwise by known random ±1 before we start.

I Doesn’t permanently effect heavy hitters

I σ = ±1 random vector; ν is noise vector.

I What about
∑

j σjνj?

I E
[∑

j σjνj

]
= 0

I E

[∣∣∣∑j σjνj

∣∣∣2] =
∑

j ,k νjνkE [σjσk] =
∑

j ν
2
j .

So
∣∣∣∑j σjνj

∣∣∣ ≈ ‖ν‖2.

Noise in L2

Multiply signal slotwise by known random ±1 before we start.

I Doesn’t permanently effect heavy hitters

I σ = ±1 random vector; ν is noise vector.

I What about
∑

j σjνj?

I E
[∑

j σjνj

]
= 0

I E

[∣∣∣∑j σjνj

∣∣∣2] =
∑

j ,k νjνkE [σjσk] =
∑

j ν
2
j .

So
∣∣∣∑j σjνj

∣∣∣ ≈ ‖ν‖2.

Noise in L2

Multiply signal slotwise by known random ±1 before we start.

I Doesn’t permanently effect heavy hitters

I σ = ±1 random vector; ν is noise vector.

I What about
∑

j σjνj?

I E
[∑

j σjνj

]
= 0

I E

[∣∣∣∑j σjνj

∣∣∣2] =
∑

j ,k νjνkE [σjσk] =
∑

j ν
2
j .

So
∣∣∣∑j σjνj

∣∣∣ ≈ ‖ν‖2.

Heavy Hitter Size v. Noise

Scale so ‖noise‖2 = 1.
Ignore heavy hitters with energy ≤ cε/k ; altogether, degrade noise
from 1 to 1 + cε.
(Set c later...)

Hashing

Send each position into one of O(k) buckets, at random.

1 0 0 0 0
0 0 0 1 0
0 1 1 0 1

1
2
3
4
5

Accomplished by a matrix ...which is 1/k sparse

Hashing

Send each position into one of O(k) buckets, at random.

1 0 0 0 0
0 0 0 1 0
0 1 1 0 1

1
2
3
4
5

Accomplished by a matrix

...which is 1/k sparse

Hashing

Send each position into one of O(k) buckets, at random.

1 0 0 0 0
0 0 0 1 0
0 1 1 0 1

1
2
3
4
5

Accomplished by a matrix ...which is 1/k sparse

Hashing, results

Get around 3k/4 buckets with:

I Exactly one fresh heavy hitter

I Around n/k total positions

I Noise contribution 1
k ‖ν‖

2
2.

I small compared with energy of heavy hitter

Reduced to 1-sparse signal of length ≈ n/k .

1-Sparse Signal of length n/k

Ideally, recover bit-by-bit. E.g.,

Combinatorial decoding: bit-testLocating a Heavy Hitter

! Suppose the signal contains one “spike” and no noise

! log2 d bit tests will identify its location, e.g.,

B1s =

0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

0
0
1
0
0
0
0
0

=

0
1
0

MSB

LSB

bit-test matrix · signal = location in binary

One Sketch for All (MMDS 2006) 18
But:

I Constant fraction of measurements may be wrong!

Solution: Use “good” ECC...

I Tolerate constant fraction of errors

I Blow up length by constant factor only

I Use appropriate blocksize; exhaustive algorithms are efficient.

Iterate...

First iteration:

I # heavy hitters: k → k/2.

I Noise energy: 1 to 1 + 2 · 2/3

I Failure probability 1/4.

Repeat for (k/2)-sparse signal.

Iterate...

Repeat for (k/2)-sparse signal.
j ’th iteration:

I Sparsity: k/2j to k/2j+1

I Noise: 5− 2 · (2/3)j to 5− 2 · (2/3)j+1

I Failure prob: 1/3− 1/4j to 1/3− 1/4j+1

Cost:(
k

2j

)
log

(
d · 2j

k

)(
3

2

)j

log
(
4j
)

= k log

(
d

k

)(
3

4
+ o(1)

)j

.

Summable over j.

Iterate...

Repeat for (k/2)-sparse signal.
j ’th iteration:

I Sparsity: k/2j to k/2j+1

I Noise: 5− 2 · (2/3)j to 5− 2 · (2/3)j+1

I Failure prob: 1/3− 1/4j to 1/3− 1/4j+1

Cost:(
k

2j

)
log

(
d · 2j

k

)(
3

2

)j

log
(
4j
)

= k log

(
d

k

)(
3

4
+ o(1)

)j

.

Summable over j.

Summary

For each x , with high probability,

‖x − x̂‖2 ≤ (1 + ε) min
y k−sparse

‖x − y‖2.

I x̂ = D(Ax).

I A has O(k log(n/k)) rows (and is ≈ 1/k sparse)

I D runs in time k poly(log(n)).

