next up previous
Up: A semantics for BAN Previous: References

Appendix

Proof of Lemma 24

Considering the semantics of specification triples, it is sufficient to prove for every positive formula $\phi$ with ${\cal A} \derives \phi$ that for arbitrary s , $\transf{a}{s} \models \phi$ follows from ${\cal A} \union \predprot{a}$ positive, ${\cal A} \allows a$ and $s \models {\cal A}$.We will prove this by induction on the structure of (positive) $\phi$. We write $a=\send{A}{B}{M}$ and $s'=\transf{a}{s}$.


\begin{outcase}
\mbox{\bf Case}~\mbox{\rm $\phi$, for $\derives \phi\,$:}
 \begi...
 ...\sees X \nomath{implies} s \models S' \oncesaid Y'
 \end{eqnarray*}\end{outcase}

First, assume that for some R : $X' \in \Contents{\Sees_R}$. Then:
\begin{calc}
\xpr{X' \in \Contents{\Sees_R}}
 \z{\equiv}{definition of $\Content...
 ...{s' \models R' \sees X' \nomath{implies} s' \models S' \oncesaid Y'}
 \end{calc}
Now assume that for no R : $X' \in \Contents{\Sees_R}$; in particular, $X' \not\in \Contents{\Sees_{R'}}$. We want to prove that also in that case $s' \models R'
 \sees X' \nomath{implies} s' \models S' \oncesaid Y'$. So assume $s' \models R' \sees X'$, i.e., $X' \in \Sees'_{R'}$, and therefore $X' \in \Contents{\Sees'_{R'}}$. The only participant R' that can have $\Sees_{R'} \not= \Sees'_{R'}$ is B . From $X' \in \Contents{\Sees'_{B}}\setminus\Contents{\Sees_B}$ and $\Contents{\Sees'_{B}} = \Contents{\Sees_B}\union\Contents{M}$ we see that $X' \in \Contents{M}$, and so $\encrypt{Y'}{K}{S'} \in \Contents{M}$. Note further that $s' \models A \oncesaid M$. We now prove by induction on the structure of messages that for all M :

If $s \models {\cal A}$, ${\cal A} \allows \send{A}{B}{M}$, $\encrypt{Y'}{K}{S'} \in \Contents{M}$ and $s' \models A \oncesaid M$,
then $s \models S' \oncesaid Y'$


\begin{outcase}
% latex2html id marker 1515
\mbox{\bf case}~\mbox{\rm $\encrypt{...
 ...models \key{P}{Q}{K}$}
 \xpr{s \models S' \oncesaid Y'}
 \end{calc}\end{outcase}


\begin{outcase}
% latex2html id marker 1592
\mbox{\bf case}~\mbox{\rm $\encrypt{...
 ...models \key{P}{Q}{K}$}
 \xpr{s \models S' \oncesaid Y'}
 \end{calc}\end{outcase}


\begin{outcase}
% latex2html id marker 1680
\mbox{\bf case}~\mbox{\rm $(M_1,M_2)...
 ...n of 
 Lemma~\ref{spec-same}. We continue with the remaining Cases.\end{outcase}


\begin{outcase}
\mbox{\bf Case}~\mbox{\rm $(P \controls \phi) \land \phi\,$:}
 \...
 ...ntics of $\possesses$}
 \xpr{s' \models P \possesses K}
 \end{calc}\end{outcase}

Since $\Sees_P$, $\Once_P$ and $\Believes_P$ are also increase, the proofs for $P \sees X$, $P \oncesaid X$, $P \believes \phi$ and $P \believes \fresh X$ are analogous.


\begin{outcase}
\mbox{\bf Cases}~\mbox{\rm $\phi \land \psi$, $\phi \lor \psi$, ...
 ...or $\phi \lor \psi$\space and $\forall x :: \phi$ 
 are analogous. \end{outcase}

\fbox {\vphantom{\tiny .}}

Proof of Lemma 28

The proof is analogous to the proof of Lemma 24. According to the semantics of specification triples, it is sufficient to prove for every formula $\psi$ in ${\cal A}$ that for arbitrary s , $\transf{a}{s} \models \psi$ follows from ${\cal A} \union \predprot{a}$ safe, ${\cal A} \allows a$ and $s \models {\cal A}$.For positive $\psi \in {\cal A}$ Lemma 24 ensures that $s' \models \psi$. For $\psi = \rectify{\phi}$ (where $\phi$ is positive) we must prove that either $\rectify{\phi}$ is positive, or $s' \models \rectify{\phi}$ under the assumptions mentioned. We prove this by induction on the structure of (positive) $\phi$.Before embarging on the induction, note that formulas of each of the forms $\key{P}{Q}{K}$, $P \possesses K$, $P \sees X$ and $P \oncesaid X$ are invariant under the mapping $\rectify{\placeh}$, so that we can skip them in the case analysis.


\begin{outcase}
% latex2html id marker 1838
\mbox{\bf Case}~\mbox{\rm $\phi$, $\...
 ...\land \phi}
 \end{calc} which is positive, because $\phi$\space is.\end{outcase}


\begin{outcase}
\mbox{\bf Case}~\mbox{\rm $P \controls \phi \land \phi$, $\phi$\...
 ...
 \xpr{s'\models \rectify{P \controls \phi \land \phi}}
 \end{calc}\end{outcase}


\begin{outcase}
\mbox{\bf Case}~\mbox{\rm $(P \believes Q \controls \phi) \land ...
 ...believes Q \controls \phi) 
 \land (R \believes \phi)}}
 \end{calc}\end{outcase}


\begin{outcase}
\mbox{\bf Cases}~\mbox{\rm $\phi_1\land\phi_2$, $\phi_1\lor\phi_...
 ...\varphi \lor \psi$\space and $\forall x :: \varphi$
 are analogous.\end{outcase}

Finally, the postponed Case  Observe that $\rectify{P\believes \fresh X} = P \rightlybelieves \fresh X
 = P \believes \fresh X \land \fresh X$. The first conjunct of this expression is positive, which is enough to prove our claim. The second conjunct is not positive, hence we need to prove $s' \models \fresh X$ separately.

According to the definition of $\fresh X$, we can assume:

For all $P, \phi$ : $s \models P \oncesaid (X,\phi) \implies P \believes \phi$

We have to prove:

For all $P, \phi$ : $s' \models P \oncesaid (X,\phi) \implies P \believes \phi$

Let P and $\phi$ be given. We now distinguish three cases to prove the above implication: $(X,\phi) \in \Once_P$, $(X,\phi) \not\in \Once'_P$ and finally $(X,\phi) \in \Once'_P\backslash \Once_P$. Note that it is sufficient to prove $s' \models P \believes \phi$.


\begin{calc}
\xpr{(X,\phi) \in \Once_P}
 \z{\equiv}{semantics of $\oncesaid$}
 \...
 ...\equiv}{semantics of $\believes$}
 \xpr{s' \models P \believes \phi}
 \end{calc}


\begin{calc}
\xpr{(X,\phi) \not\in \Once'_P}
 \z{\equiv}{semantics of $\oncesaid...
 ...s}
 \xpr{s' \models P \oncesaid (X,\phi) \implies P \believes \phi} 
 \end{calc}
For $(X,\phi) \in \Once'_P\backslash \Once_P$, we first observe that P=A (only the sender's $\Once$ set has changed). We now prove the following statement by induction on M :

If $(X,\phi) \in \Once'_A\backslash \Once_A$, $(X,\phi) \in \Contents{M}$, ${\cal A} \allows \send{A}{B}{M}$, $s \models {\cal A}$
and $s' \models A \oncesaid M$, then $s' \models A \believes \phi$.


\begin{outcase}
% latex2html id marker 1990
\mbox{\bf case}~\mbox{\rm $(X,\phi)\...
 ...nduction Hypothesis}
 \xpr{s' \models A \believes \phi}
 \end{calc}\end{outcase}


\begin{outcase}
% latex2html id marker 2049
\mbox{\bf case}~\mbox{\rm $\encrypt{...
 ...e distinct from encrypted messages}
 \xpr{\mbox{false}}
 \end{calc}\end{outcase}

This proves by induction the claim

If $(X,\phi) \in \Once'_A\backslash \Once_A$, $(X,\phi) \in \Contents{M}$, ${\cal A} \allows \send{A}{B}{M}$, $s \models {\cal A}$
and $s' \models A \oncesaid M$, then $s' \models A \believes \phi$.
which concludes Case $\fresh X$ of the induction of Lemma 28.

\fbox {\vphantom{\tiny .}}


next up previous
Up: A semantics for BAN Previous: References