[Title removed for anonymity]

Graham Cormode
graham@research.att.com

Magda Procopiuc (AT&T)
Divesh Srivastava (AT&T)
Thanh Tran (UMass Amherst)
Introduction

- Privacy is a common theme in public discourse
 - Privacy on social networks
 - Privacy of browsing activity on the web
 - Privacy in public places (e.g. in airports)

- Although there has been much effort in computer security, privacy is a growing field
 - **Initial efforts**: data swapping (1980s) k-anonymity (~2000), etc.
 - **Current focus**: differential privacy (2005 onwards)
Differential Privacy

- **Principle**: information released reveals little about any individual
 - Even if adversary knows (almost) everything about everyone else!

- Thus, individuals should be secure about contributing their data
 - What is learnt about them is about the same either way

- Much work on providing differential privacy
 - Simple recipe for some data types e.g. numeric answers
 - More complex for arbitrary data (exponential mechanism)
Differential Privacy

An adversary knowing information of everyone except one individual cannot deduce information about that individual.

A randomized algorithm K satisfies ϵ-differential privacy if:

Given any pair of neighboring data sets, D_1 and D_2, and S in $\text{Range}(K)$:

$$\Pr[K(D_1) = S] \leq e^\epsilon \Pr[K(D_2) = S]$$
Achieving ε-Differential Privacy

(Global) Sensitivity of publishing:

$$s = \max_{x,x'} |F(x) - F(x')|, \ x, x' \text{ differ by 1 individual}$$

E.g., one individual changing his/her info affects at most 2 entries in the frequency matrix; hence $s = 2$

For every value that is output:

- Add Laplacian noise, $\text{Lap}(\varepsilon/s)$:
- Or Geometric noise for discrete case:
Applying Differential Privacy

- **This talk:** applying differential privacy to real data
- **Part 1:** Applying differential privacy to sparse data
 - How to take arbitrary data and publish under DP?
 - Make the data efficient to generate and use
- **Part 2:** Understanding differential privacy guarantees
 - Aim to better understand the privacy guarantees
 - Show the limitations due to population statistics
Publishing Anonymized Data

- **Census data:**
 - On-the-Map dataset contains micro data on home and work location distribution for the states in the US

- **Tale of two cities:**
 - Location information from wireless cellular networks is used to understand human mobility patterns

- In general, given arbitrary data, we want to publish a differentially private version of it
 - General approach: represent as contingency table, add noise
Data Sparsity: Examples

- To publish the work-home commute data in the US:
 - Number of census tracts in the US: \(\sim 10^6 \)
 - Size of the frequency matrix: \((10^5)^2 \approx 10^{10}\)
 - Consider data of 10 million residents
 - At most \(10^{-3}\) density, the data is 99.9% sparse!
 - Only gets worse as dimensionality increases
Achieving ε-Differential Privacy

Input Data Table

<table>
<thead>
<tr>
<th>TID</th>
<th>Home</th>
<th>Work</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>X</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>X</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>X</td>
</tr>
<tr>
<td>4</td>
<td>A</td>
<td>Y</td>
</tr>
<tr>
<td>5</td>
<td>Z</td>
<td>C</td>
</tr>
<tr>
<td>6</td>
<td>A</td>
<td>X</td>
</tr>
<tr>
<td>7</td>
<td>B</td>
<td>X</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Frequency Matrix

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>40</td>
<td>25</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>30</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>X</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Y</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Z</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Anonymized Data

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>43</td>
<td>22</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>35</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>X</td>
<td>0</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Y</td>
<td>2</td>
<td>0</td>
<td>6</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
<td>3</td>
<td>6</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>
Objectives

Anonymization can make sparse input dense and noisy
⇒ High cost for storing and processing
⇒ Reduced data utility

Objectives: To publish data sets so that:
- they have differential privacy
- the publishing process is efficient
- queries are answered with high utility

Approaches: adopt techniques from data summarization, with new analysis & algorithms to meet these different objectives
Shortcut Approach

- Post-processing anonymized data doesn’t breach privacy
- So publish a summary of the anonymized data

Goal: generate M'' directly from M, shortcutting M'
Summarization Techniques

- Goals of summarization:
 - Size of the published data \approx size of original data, n
 - Give good answers e.g. for count queries over ranges
 - Speed up the anonymization process

- Uniform sampling does not suffice for sparse data since the sample contains most of the noise from zero entries

- Consider various data-dependent summarization techniques:
 - Simple filtering
 - Threshold/priority sampling
 - (Sketches)
 - Combinations of the above
Filtering

- **Goal**: retain all (noisy) values greater than θ
- Handle non-zero entries directly
 - Add noise from geometric dbn $Pr[|X|=x] = (1-\alpha)/(1+\alpha) \alpha^{|x|}$, $(\alpha = \exp(-\epsilon/2))$, test against filter
- For zero values, determine probability of passing filter:
 - $Pr[M'(i) > \theta \mid M(i)=0] = p_\theta = \sum_{x > \theta} (1-\alpha)/(1+\alpha) \alpha^{|x|} = \alpha^\theta/(1+\alpha)$
- Binomial dbn $B(m-n,p_\theta)$ sets how many locations to pick
- Draw noise values conditioned on being $> \theta$:
 - $Pr[M'(i) = b \mid M'(i) > \theta] = Pr[M'(i)=b] / Pr[M'(i)>\theta] = (1-\alpha)\alpha^{b-\theta}$
 - Use CDF: $Pr[M'(i) < x \mid M'(i) > \theta] = \sum_{\theta \leq b \leq x} (1-\alpha)\alpha^{b-\theta} = 1 - \alpha^{x-\theta+1}$
Threshold Sampling

- **Goal**: sample weight w with probability $\min\{1, w/\tau\}$
- Again, handle non-zeros directly
- For zero-values, find probability of being sampled:
 - $\Pr[i \in S] = \sum_{\nu} \Pr[i \in S | M'(i) = \nu] \Pr[M'(i)=\nu] = p_\tau$
 - Calculate $p_\tau = 2\alpha(1-\alpha^\tau)/(\tau(1-\alpha^2))$
- Can find CDF of values, conditioned on being in the sample:
 - $\Pr[X = \nu \leq -\tau] = \tau \alpha^{-\nu} C_\tau(1-\alpha)$
 - $\Pr[-\tau < X = \nu \leq 0] = C_\tau(-\nu \alpha^{-\nu} + (\nu +1) \alpha^{-\nu+1} - \alpha^{\nu+1})$
 - $\Pr[0 < X = \nu \leq \tau] = \frac{1}{2} + \alpha C_\tau(1 - (\nu+1)\alpha^{\nu} + \nu\alpha^{\nu+1})$
 - $\Pr[\tau < X = \nu] = \frac{1}{2} + \alpha C_\tau(1 - \alpha^{\nu} - \tau\alpha^{\nu}(1-\alpha))$
 - where $C_\tau = 1/(2\alpha(1-\alpha^\tau))$
Filter + Threshold

- **Combine both methods:** sample with τ values above θ
- **For zero-values, find probability of being sampled:**
 - $\Pr[\ i \in\ S\] = \sum_{\nu} \Pr[\ i \in\ S\ |\ M'(i) = \nu > \theta] \Pr[\ M'(i) = \nu > \theta] = p_{\theta,\tau}$
 - Calculate $p_{\theta,\tau} = 2/((\tau(1-\alpha^2)) \cdot (\theta \alpha^\theta - (\theta-1) \alpha^{\theta+1} - \alpha^{\tau+1})$
- **CDF of values, conditioned on being in the sample:**
 - $\tau \ C_{\theta,\tau} (1-\alpha) \ \alpha^{-\nu}$, if $\nu \leq -\tau$
 - $C_{\theta,\tau} (-\nu \ \alpha^{-\nu} + (\nu+1)\alpha^{-\nu+1} - \alpha^{\tau+1})$, if $-\tau < \nu \leq -\theta$
 - $\frac{1}{2} + C_{\theta,\tau} (\theta \ \alpha^\theta - (\theta-1) \ \alpha^{\theta+1} - (\nu+1)\alpha^{\nu+1} + \nu \ \alpha^{\nu+2})$, if $\theta \leq \nu \leq \tau$
 - $1- \tau \ C_{\theta,\tau} (1-\alpha) \ \alpha^{\nu+1}$, if $\nu > \tau$
 - where $C_{\theta,\tau} = 1/(2(\ \theta \ \alpha^\theta - (\theta-1) \ \alpha^{\theta+1} - \alpha^{\tau+1}))$
- Can carefully manipulate sample to get to desired size
Optimizing for Range Queries

- **Standard technique**: decompose range into subranges
 - **Dyadic ranges**: length is power of 2, at a multiple of length
 - Any range < u can be written as $\log u$ subranges
- Useful for accuracy:
 - Only $\log u$ noise, not u (volume of noise is a log factor more)
- Can combine with summarization
Experiments

- Compare different techniques to (exhaustive) addition of noise to every cell
- Use “real” and synthetic data
- Control parameters:
 - Data density \((n/m)\)
 - Mean and standard deviation of (non-zero) data
 - Size of range queries
- Measure absolute error in range query answer
Synthetic Data

Small subsets, $\mu=100$, $\sigma=20$, $n/m=0.1$
- Build summary of size n
- Sampling is capturing M', including noise
- Combination of filtering and sampling most effective
 - Improves over “baseline” method

Large subsets, $\mu=100$, $\sigma=20$, $n/m=0.01$
OnTheMap data

- Here, sampling is more accurate
- Dyadic ranges effective at bounding error
 - For even short ranges
 - Combination of dyadic and summarization works well
Summary

- Effective way to publish data with differential privacy
- Combination of filtering and sampling seems most effective over a variety of settings
- Dyadic ranges are useful, when ranges are sufficiently large (a constant fraction of the data space)
- Future work: differentially private space decompositions
 - E.g. kd-trees, histograms
Outline

- Introduction
- Part 1 – differential privacy on sparse data
- Part 2 – when differential privacy isn’t enough
Revisiting the definition

- Differential privacy guarantees that what I learn about an individual from the released data is about the same whether or not they are in the data.
- So I can’t learn much about an individual from the released data, right?
- WRONG!
 - Will show how applying differential privacy can still allow us to learn about individuals.
Build a Classifier

- **Key idea**: build an accurate classifier under DP
 - Similar ideas have been used to attack other privacy definitions
- **Data model**: target ("sensitive") attribute $s \in SA$
 - Think disease status, salary band, etc.
- "Observable" attributes $t_1, t_2 \ldots t_m$
 - Think age, gender, zip code, height etc.
- **Goal**: build a classifier that given $(t_1, t_2, \ldots t_m)_i$ predicts s_i
 - An accurate classifier reveals the private information
Building the Classifier

Build a naïve Bayes classifier for s:
- Prediction is $s^\sim = \arg \max_{s \in S_A} \Pr[s] \prod_{j=1}^{m} \Pr[t_i | s]$

Parameters are the marginal distributions
\[
\Pr [t_i | s] = \Pr[t_i \cap s] / \Pr[s] \approx |\{ r \in T : t_i \cap r_s = s \}| / |\{ r \in T : r_s = s \}|
\]

Just need the counts $\forall s \in S_A, i, v \in T_i |\{ r \in T : t_i = v \cap r_s = s \}|$
- Can obtain “noisy” versions of these under differential privacy

Minor corrections: add 1 to counts (Laplacian correction), round up to 1 if negative due to noise
Impact of Noise

- DP adds noise to mask out the effect of one individual
- But when data contains many individuals, noise will be minimal – essentially at the level of sampling error
- May need to do some grouping / bucketing of values to ensure sufficient density (e.g. replace salary with ranges)
Experimental Study

- Tested accuracy of predicting
 - ‘occupation’ in UCI Adult data set (focus of previous work)
 - ‘income’ in UCI Internet-usage data set
- Clear improvement in accuracy over baseline methods
 - E.g. just predict most common attribute value
When restricting to high-confidence predictions (~10% of the data), accuracy is yet higher.
Discussion

- Why does this work?
 - The classifier is based on correlations between the observable attributes and the target attribute
 - These are *population statistics*: they arise from the coarse behavior of the whole population
 - One individual has almost no influence on them
 - More directly, the noise added to mask an individual does not substantially change them until the noise is very large

- Differential privacy is behaving as advertised
 - What we learn about the individual really is the same whether they are there or not
Enabling Disclosure

- Should we be worried? Correlations are inherent in the data?
 - Suppose the data set covers thousands of individuals, took great expense and effort to gather
 - An ‘attacker’ would never go to this effort to collect data
 - But almost ‘for free’ they can use the data (with privacy) and potentially compromise an individual’s privacy

- “If the release of the statistic S makes it possible to determine the (microdata) value more accurately than without access to S, a disclosure has taken place” – T. Dalenius, 1977
 - DP does not prevent disclosure, even when the attacker has no other information
Limitations

- Ultimately, the information revealed is no more than the best classifier that can be build on the data
 - We have to consider the ‘sensitivity’ of the classifier: Naïve Bayes has low sensitivity, and so is effective; others have higher sensitivity
- The classifier is only probabilistically accurate: we don’t know when it is correct (though its confidence is correlated)
- This approach: require target to have small cardinality
 - But regression approaches should also work
Comparison to other attacks

- Learning attacks have been used on other anonymization schemes
 - “deFinetti attack” [Kifer 09] follows a similar tack: build classifier from released l-diverse data, use this to infer sensitive data
 - Extra strength: can use additional ‘grouping’ information to eliminate possibilities and further improve accuracy
 - However, increasing the group size weakens this
 - Bottom line: ultimately, similar accuracy for attacker with DP or l-diversity under this kind of learning attack
Concluding Remarks

- Have demonstrated that differentially private data can still be used to learn private data about individuals
- Relies on basic correlations in data – we would not in general want to remove these (these are the utility of the data!)
- Means that merely ensuring DP is not sufficient for privacy
 - Can’t just apply DP and forget it: must think more deeply about whether data release provides sufficient privacy for data subjects