The Johnson-Lindenstrauss Lemma for Linear and Integer Feasibility

Leo Liberti, Vu Khac Ky, Pierre-Louis Poirion
CNRS LIX Ecole Polytechnique, France

Rutgers University, 151118
The gist

• I want to solve huge LPs in standard form

\[\min \{ c^\top x \mid Ax = b \land x \geq 0 \} \]

• I am prepared to accept approximate solutions

• I want to randomly project the rows of \(Ax = b \land x \geq 0 \) to a lower dimensional space, while keeping the accuracy with high probability

• Then I can use the projected LP as a feasibility oracle

• And I'd also like to do the same for ILPs
Linear Membership Problems
Restricted Linear Membership (RLM)
Given vectors $A_1, \ldots, A_n, b \in \mathbb{R}^m$ and $X \subseteq \mathbb{R}^n$, is there $x \in X$ s.t.

$$b = \sum_{i \leq n} x_i A_i$$

RLM is a fundamental problem, which subsumes:

- **Linear Feasibility Problem** (LFP)
 Given an $m \times n$ matrix A and $b \in \mathbb{R}^m$, is there an $x \in \mathbb{R}^n_+$ s.t. $Ax = b$?

- **Integer Feasibility Problem** (IFP)
 Given an $m \times n$ matrix A and $b \in \mathbb{R}^m$, is there an $x \in \mathbb{Z}^n_+$ s.t. $Ax = b$?

- Efficient solution methods for LFP/IFP directly yield fast bisection algorithms for (bounded) **Linear Programming** (LP) and **Integer Linear Programming** (ILP)
“Big data” RLM instances

- Most efficient deterministic methods:
 - **LFP**: simplex method, ellipsoid algorithm
 - **IFP**: SAT solution algorithms, Constraint Programming

- slow if m, n too large
 - guarantees are useless if data not accurate/correct

- **trade guarantee off for efficiency**: randomized algorithms

- **The approach**: decrease m (i.e., lose some dimensions)
 - make sure geometry of projected prob. is similar to original
The shape of a cloud of points

- **RLM**: Is b a *restricted linear combination* of pts $A_1, \ldots, A_n \in \mathbb{R}^m$?

- **Lose dimensions but not too much accuracy**

 can we find $k \ll m$ and pts $A'_1, \ldots, A'_n \in \mathbb{R}^k$ s.t.

 $A = (A_i \mid i \leq n)$ and $A' = (A'_i \mid i \leq n)$ “have the same shape”?

- **What is the shape of a set of points?**

- **Approximate congruence**: A, A' have almost the same shape if

 $\forall i < j \leq n \quad (1-\varepsilon)\|A_i - A_j\| \leq \|A'_i - A'_j\| \leq (1+\varepsilon)\|A_i - A_j\|$

 for some small $\varepsilon > 0$

Assume norms are all Euclidean
Losing dimensions in the RLM

Given \(X \subseteq \mathbb{R}^n \) and \(b, A_1, \ldots, A_n \in \mathbb{R}^m \), find \(k \ll m, b', A'_1, \ldots, A'_n \in \mathbb{R}^k \) such that:

\[
\exists x \in X \ b = \sum_{i \leq n} x_i A_i \quad \text{iff} \quad \exists x \in X \ b' = \sum_{i \leq n} x_i A'_i
\]

with high probability

- If this is possible, then solve \(\text{RLM}_X(b', A') \)
- Since \(k \ll m \), solving \(\text{RLM}_X(b', A') \) should be faster
- \(\text{RLM}_X(b', A') = \text{RLM}_X(b, A) \) with high probability

Nothing short of a miracle!
Losing dimensions = “projection”

In the plane, hopeless

In 3D: no better
Concentration of measure and the Johnson-Lindenstrauss Lemma
Thm.
Let T be a $k \times m$ rectangular matrix with each component sampled from $N(0, \frac{1}{\sqrt{k}})$, and $u \in \mathbb{R}^m$ s.t. $\|u\| = 1$. Then $E(\|Tu\|^2) = 1$.
Controlling the distortion of $\|Tu\|$

- $B = \text{set of unit vectors}$; by concentration of measure
 \[\forall u \in B \exists D, \, \text{const} > 0 \]
 \[P(1 - t \leq \|Tu\| \leq 1 + t) \geq 1 - De^{-\text{const} t^2} \]

- Union bound on B:
 \[P(\forall u \in B (1 - t \leq \|Tu\| \leq 1 + t)) \geq 1 - |B|De^{-\text{const} t^2} \]

- We want nonzero probability: \[\Rightarrow |B|De^{-\text{const} t^2} < 1 \]

- Set $\sqrt{\text{const}} \times t = \varepsilon \sqrt{k}$: \[\Rightarrow |B|De^{-\varepsilon^2 k} < 1 \quad \text{hiding lotta details here} \]

- $\Rightarrow k > \varepsilon^{-2} \ln(|B|) + (\text{other const})$

- $\Rightarrow \exists \text{const } C \text{ s.t. } k > C\varepsilon^{-2} \ln(|B|)$
Application to Euclidean distances

• Let $A \subset \mathbb{R}^m$ with $|A| = n$

• $\forall x \neq y \in A$ we have

$$\|Tx - Ty\|^2 = \|T(x - y)\|^2 = \|x - y\|^2 \left\| \frac{x - y}{\|x - y\|} \right\|^2 = \|x - y\|^2 \|Tu\|^2$$

• $\|u\| = 1$, so by previous results $\mathbb{E}(\|Tx - Ty\|^2) = \|x - y\|^2$

• Also, T has low distortion with high probability

• Since $|\{x - y \mid x, y \in A\}|$ is $O(n^2)$, can choose $k > C\varepsilon^{-2} \ln(n)$

Thm. [Johnson-Lindenstrauss lemma]

\[\forall \varepsilon \in (0, 1) \exists \text{ a } k \times m \text{ matrix } T \text{ such that}\]

$$\forall x, y \in A \quad (1 - \varepsilon)\|x - y\|^2 \leq \|Tx - Ty\|^2 \leq (1 + \varepsilon)\|x - y\|^2 \quad (*)$$

Proof

We showed T has nonzero probability of existing, so $\exists T$ such that (*) holds
JLL properties

• ∀ ε > 0, k ≈ \(\frac{1.8}{\varepsilon^2} \ln n \) [Venkatasubramanian & Wang 2011]

• Can be shown that \(T \) must be sampled at worst \(O(n) \) times to ensure low distortion “∀ \(x, y \in A \)”

• But on average \(||Tx - Ty|| = ||x - y|| \), and distortion decreases exponentially with \(n \)

• In most cases, you need only sample once

We only need a logarithmic number of dimensions in function of the number of points

Surprising fact:

\(k \) is independent of the original number of dimensions \(m \)
Many possible random projectors for JLL

• orthogonal proj. on a random k-dim. linear subspace of \mathbb{R}^m
 \textit{(used in the original proof of JLL)} [Johnson & Lindenstrauss, 1984]

• random $k \times m$ matrices with entries drawn from $N(0, \frac{1}{\sqrt{k}})$
 \textit{(modern treatments of JLL)} E.g. [Dasgupta & Gupta, 2003]

• random $k \times m$ matrices with entries in $\{-1, 1\}$ with probability $\frac{1}{2}$; and random $k \times m$ matrices with entries $= -1$ and $= 1$ with probability $\frac{1}{6}$, and 0 with probability $\frac{2}{3}$
 \textit{(used for sparse data sets)} [Achlioptas 2003]

• sparser projectors are possible [Dasgupta et al., 2010; Kane & Nelson 2010; Allen-Zhu et al., 2014]

• also faster but \textit{dense}! [Liberty, 2009]
Applying the JLL to the RLM
The main theorem

Let $T : \mathbb{R}^m \to \mathbb{R}^k$ be a JLL random projection, and $b, A_1, \ldots, A_n \in \mathbb{R}^m, X$ be a RLM instance. For any given vector $x \in \mathbb{R}^n$, we have:

(i) If $b = \sum_{i=1}^{n} x_i A_i$ then $Tb = \sum_{i=1}^{n} x_i TA_i$;

(ii) If $b \neq \sum_{i=1}^{n} x_i A_i$ then $\mathbb{P} \left(Tb \neq \sum_{i=1}^{n} x_i TA_i \right) \geq 1 - 2e^{-Ck}$;

(iii) If $b \neq \sum_{i=1}^{n} y_i A_i$ for all $y \in X \subseteq \mathbb{R}^n$, where $|X|$ is finite, then

$$\mathbb{P} \left(\forall y \in X \ Tb \neq \sum_{i=1}^{n} y_i TA_i \right) \geq 1 - 2|X|e^{-Ck};$$

for some constant $C > 0$ (independent of n, k).

[VPL, arXiv:1507.00990v1/math.OC]
Proof (i)

Since T is a matrix, (i) follows by linearity.
Proof (ii)

Cor.
\[\forall \varepsilon \in (0, 1) \text{ and } z \in \mathbb{R}^m, \text{ there is a constant } C \text{ such that} \]
\[P((1 - \varepsilon)\|z\| \leq \|Tz\| \leq (1 + \varepsilon)\|z\|) \geq 1 - 2e^{-C\varepsilon^2k} \]

Proof

By the JLL

Lemma

If \(z \neq 0 \), there is a constant \(C \) such that \(P(Tz \neq 0) \geq 1 - 2e^{-Ck} \)

Proof

Consider events \(\mathcal{A} : Tz \neq 0 \) and \(\mathcal{B} : (1 - \varepsilon)\|z\| \leq \|Tz\| \leq (1 + \varepsilon)\|z\| \)
\[\Rightarrow \mathcal{A}^c \cap \mathcal{B} = \emptyset, \text{ othw } Tz = 0 \Rightarrow (1 - \varepsilon)\|z\| \leq \|Tz\| = 0 \Rightarrow z = 0, \]
contradiction
\[\Rightarrow \mathcal{B} \subseteq \mathcal{A} \Rightarrow P(\mathcal{A}) \geq P(\mathcal{B}) \geq 1 - e^{-C\varepsilon^2k} \text{ by Corollary} \]
Holds \(\forall \varepsilon \in (0, 1) \) hence result

Now it suffices to apply the Lemma to \(Ax - b \)
Proof (iii)

By the union bound on (ii)

\[
P \left(\forall y \in X \ Tb \neq \sum_{i=1}^{n} y_i T A_i \right) = P \left(\bigcap_{y \in X} \{ Tb \neq \sum_{i=1}^{n} y_i T A_i \} \right) \\
= 1 - P \left(\bigcup_{y \in X} \{ Tb \neq \sum_{i=1}^{n} y_i T A_i \}^{C} \right) \geq 1 - \sum_{y \in X} P \left(\{ Tb \neq \sum_{i=1}^{n} y_i T A_i \}^{C} \right) \\
[by (ii)] \geq 1 - \sum_{y \in X} 2e^{-ck} = 1 - 2|X|e^{-ck}
\]
Consequences of the main theorem

• (i) and (ii) allow us to lose dimensions when checking certificates given x, with high probability $b = \sum_i x_i A_i \Leftrightarrow Tb = \sum_i x_i TA_i$

• (iii) allows us to lose dimensions when solving IFP whenever $|X|$ is polynomially bounded

e.g. knapsack set $\{x \in \{0, 1\}^n \mid \sum_{i \leq n} \alpha_i x_i \leq d\}$ for a fixed d with $\alpha > 0$

• (iii) also hints as to why LFP is not so easy:

 - LFP \Leftrightarrow Cone Membership

 - $Tb \notin \text{cone}(TA_1, \ldots, TA_n)$ can be written as $\bigcap_{x \in \mathbb{R}^n} \{Tb \neq \sum_{i \leq n} x_i TA_i\}$

 - where $|X| = |\mathbb{R}^n| = 2^{\aleph_0}$, certainly not polynomially bounded!
What to do when $|X|$ is superpolynomial
Separating hyperplanes

Project separating hyperplanes instead

- Convex $C \subseteq \mathbb{R}^m$, $x \not\in C$: then \exists hyperplane c separating x, C

- In particular, true if $C = \text{cone}(A_1, \ldots, A_n)$ for $A \subseteq \mathbb{R}^m$

- We aim to show $x \in C \iff Tx \in TC$ with high probability

- As above, if $x \in C$ then $Tx \in TC$ by linearity of T
 real issue is proving the converse
Thm.

Given \(c, b, A_1, \ldots, A_n \in \mathbb{R}^m\) of unit norm s.t. \(b \notin \text{cone}\{A_1, \ldots, A_n\}\) pointed, \(\varepsilon > 0\), \(c \in \mathbb{R}^m\) s.t. \(c^\top b < -\varepsilon\), \(c^\top A_i \geq \varepsilon\) (\(i \leq n\)), and \(T\) a random projector:

\[
P[Tb \notin \text{cone}\{TA_1, \ldots, TA_n\}] \geq 1 - 4(n + 1)e^{-C(\varepsilon^2 - \varepsilon^3)k}
\]

for some constant \(C\).

Proof

Let \(\mathcal{A}\) be the event that \(T\) approximately preserves \(\|c - \chi\|^2\) and \(\|c + \chi\|^2\) for all \(\chi \in \{b, A_1, \ldots, A_n\}\). Since \(\mathcal{A}\) consists of \(2(n + 1)\) events, by the JLL Corollary (squared version) and the union bound, we get

\[
P(\mathcal{A}) \geq 1 - 4(n + 1)e^{-C(\varepsilon^2 - \varepsilon^3)k}
\]

Now consider \(\chi = b\)

\[
\langle Tc, Tb \rangle = \frac{1}{4} (\|T(c + b)\|^2 - \|T(c - b)\|^2)
\]

by JLL

\[
\leq \frac{1}{4} (\|c + b\|^2 - \|c - b\|^2) + \frac{\varepsilon}{4} (\|c + b\|^2 + \|c - b\|^2)
\]

\[
= c^\top b + \varepsilon < 0
\]

and similarly \(\langle Tc, TA_i \rangle \geq 0\)

[VPL, arXiv:1507.00990v1/math.OC]
Consequences of projecting separations

- **Result allows solving LFP by random projection**

 hence, by bisection, also LP

- Probability of being correct depends on ε (the larger the better)

- Largest ε given by $\max\{\varepsilon \geq 0 \mid c^\top b \leq -\varepsilon \land \forall i \leq n (c^\top A_i \geq \varepsilon)\}$

 an LP, so this does not help us much

- **If $\text{cone}(A_1, \ldots, A_n)$ is almost non-pointed, ε is very small at best**
Improving ε

- We can slightly worsen the decrease rate of $P(Tb \notin TA)$ in exchange for a better requirement on ε.

- Proof is based on showing that the minimum distance to a cone is also approximately projected by T.

- **This version also works with non-pointed cones.**
When X is large, infinite or uncountable
A surprising result

Thm.

Given \(p \in \mathbb{R}^m, X \subseteq \mathbb{R}^m \) at most countable s.t. \(p \notin X \), \(T : \mathbb{R}^m \rightarrow \mathbb{R}^k \) a random projector for any \(k \geq 1 \), then \(P(Tp \notin TX) = 1 \).

Proof

We have:

\[
P(Tp \notin TX) = P\left(\bigcap_{x \in X} \{Tp \neq Tx\} \right) = P\left(\bigcap_{x \in X} \{T(p - x) \neq 0\} \right)
\]

Note that:

(a) \(p \notin X \Rightarrow \forall x \in X \ (p - x \neq 0) \)
(b) \(T \) has full rank \(k \) with prob. 1

Hence \(\forall x \in X \ P(T(p - x) \neq 0) = 1 \)

Intersection of countably many almost sure events is almost sure

Surprising since \(k = 1 \) suffices: solve IFP on a line!

[VPL, arXiv:1509.00630v1/math.OC]
Consequences

• In theory, solve any IFP by random projection to **only one** constraint!

• **In practice, it doesn’t work**

• Assume $X = \{x \in \mathbb{Z}^n_+ \mid Ax = b\}$

 If TAx is extremely close to Tb, a floating point approximation might yield $TA = Tb$ even though $A \neq b$

• You would need to compute using actual **real** numbers, rather than floating point
Enforcing a projected minimal distance

- Instead of $Tp \not\in TX$, require $\min_{x \in X} \|Tp - Tx\| > \tau$ for some $\tau \geq 0$

Thm.

Given $\tau, \delta > 0$ and $p \not\in X \subseteq \mathbb{R}^m$ where $|X|$ finite,

$$d = \min_{x \in X} \|p - x\| > 0,$$

and $T : \mathbb{R}^m \to \mathbb{R}^k$ a Gaussian random projector with $k \geq \frac{\log(\frac{|X|}{\delta})}{\log(\frac{d}{\tau})}$,

$$P\left(\min_{x \in X} \|T(p) - T(x)\| > \tau\right) > 1 - \delta.$$

- If p, X not integral, d can get very small and yield more floating point approximation errors; else, $d \geq 1$
What if $|X|$ is infinite?

- Let $X = \{Ax \mid x \in \mathbb{Z}_n^+\}$, where $A \in \mathbb{Z}^{mn}$ has at least one positive row.

- For any $b \in \mathbb{Z}^m$ the problem $b \in X$ is equivalent, with high probability, to its projection to a $O(\log n)$-dimensional space.

- The idea is to separate one positive row and apply random projection to the others.

- Not many real problems have a strictly positive row.
What if there is no positive row?

$\lambda_X =$ doubling dimension of X:

"The doubling dimension of a metric space X is the smallest positive integer λ_X such that every ball in X can be covered by 2^{λ_X} balls of half the radius"

My own interpretation: attach a notion of dimension to any metric space

Thm.

Given $p \notin X \subseteq \mathbb{R}^m$, let $T : \mathbb{R}^m \rightarrow \mathbb{R}^k$ be a random projector with $k \geq C \log_2(\lambda_X)$, where C is a constant. Then $\mathbb{P}(T(p) \notin T(X))$ can be made arbitrarily close to 1.

Proof

Sketch: cover X by balls, argue for each $X \cap$ ball along the lines of “projecting minimal distances” above, and use the union bound on the ball cover.

The doubling dimension λ_X turns up as a coefficient of a decreasing exponential in a probability bound, which makes it possible to derive the high probability guarantee

[VPL, arXiv:1509.00630v1/math.OC]
Computational results, a.k.a. the bad news
The dream

Project m rows $Ax = b$ to $k \ll m$ rows $TAx = Tb$ and solve projected LP/IP

1. **Assumption**: solving $TAx = Tb \land x \geq 0$ yields x' s.t. $Ax' = b$

2. **Trust the method**: solve netlib and miplib (IP)
 make sure results are good

3. **Showdown!** Pick huge, bad-ass LP/IP encoding some world-saving features and solve it!
Solving the netlib

- Assumption verified on almost every instance!

- However, need $k \approx O(m)$, say $k = m - 10$ or so

- Most netlib instances are too small

- Now TA is same size but denser than A: slow
Some results on uniform dense LP

- Matrix product TA takes too long

 Not counting it: can be streamlined and parallelized

 Also: faster JL transforms can be used

- **Infeasible instances** *(sizes from 1000×1500 to 2000×2400):*

<table>
<thead>
<tr>
<th>Uniform</th>
<th>ϵ</th>
<th>$k \approx$</th>
<th>CPU saving</th>
<th>accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(-1, 1)$</td>
<td>0.1</td>
<td>$0.5m$</td>
<td>$30%$</td>
<td>$50%$</td>
</tr>
<tr>
<td>$(-1, 1)$</td>
<td>0.15</td>
<td>$0.25m$</td>
<td>$92%$</td>
<td>$0%$</td>
</tr>
<tr>
<td>$(-1, 1)$</td>
<td>0.2</td>
<td>$0.12m$</td>
<td>$99.2%$</td>
<td>$0%$</td>
</tr>
<tr>
<td>$(0, 1)$</td>
<td>0.1</td>
<td>$0.5m$</td>
<td>$10%$</td>
<td>$100%$</td>
</tr>
<tr>
<td>$(0, 1)$</td>
<td>0.15</td>
<td>$0.25m$</td>
<td>$90%$</td>
<td>$100%$</td>
</tr>
<tr>
<td>$(0, 1)$</td>
<td>0.2</td>
<td>$0.12m$</td>
<td>$97%$</td>
<td>$100%$</td>
</tr>
</tbody>
</table>

- **Feasible instances**: similar CPU, 100% accuracy
 - No solution x' of $TAx = Tb \land x \geq 0$ satisfies $Ax = b$
 - Proved this happens almost surely
Some results on IP

• Similar story as for LPs

• **But: every solution** x' of $TAx = Tb \land x \in \mathbb{Z}_n^+$ **satisfies** $Ax = b$

• Proved this *also* happens almost surely
Issues

- LFP projection *only ever preserves feasibility*, not the certificate
- IFP projection *preserves feasibility and certificate*
- **Paradox**: IP solved by BB, which only solves LP relaxations
- Orthants occupy less volume than whole spaces
 \[\Rightarrow \text{projection works better for Uniform}(0,1) \]
- Low CPU savings and accuracy:
 \[k \approx \frac{c}{\varepsilon^2 \ln n} \]

Bet: this method will start paying off at really large \(m, n \)
Some references