next up previous
Next: Conclusion Up: A New Algorithm for Previous: Algorithm

Case Study

In this section, we illustrate the application of our algorithm to the corrected version of the Woo and Lam protocol of Table 2. We will see that new flaws have been automatically discovered. First of all, here is the roles as extracted by the algorithms:

\begin{displaymath}
Role(A) = \mbox{$\langle {!, A, B} \rangle$}
 \mbox{$\langle...
 ... \rangle$}
 \mbox{$\langle {!, \{N_b\}_{k_{as}},B} \rangle$} 
 \end{displaymath}

\begin{displaymath}
\begin{array}
{lcl}
 Role(B) & = & \mbox{$\langle {?, A, A} ...
 ...$\langle {?, \{ A, N_b \}_{k_{bs}} , S} \rangle$}
 \end{array} \end{displaymath}

\begin{displaymath}
Role(S) = \mbox{$\langle {?, (A, B, \{N_b\}_{k_{as}}) , B} \...
 ...le$}
 \mbox{$\langle {!, \{ A, N_b \}_{k_{bs}} , B} \rangle$}
 \end{displaymath}

Their associated generalized roles are respectively:

\begin{displaymath}
Role(A) = \mbox{$\langle {!, A, B} \rangle$}
 \mbox{$\langle...
 ...B} \rangle$}
 \mbox{$\langle {!, \{X\}_{k_{as}},B} \rangle$} 
 \end{displaymath}

\begin{displaymath}
\begin{array}
{lcl}
 Role(B) & = & \mbox{$\langle {?, A, A} ...
 ...$\langle {?, \{ A, N_b \}_{k_{bs}} , S} \rangle$}
 \end{array} \end{displaymath}

\begin{displaymath}
Role(S) = \mbox{$\langle {?, (A, B, \{X\}_{k_{as}}) , B} \rangle$}
 \mbox{$\langle {!, \{ A, X \}_{k_{bs}} , B} \rangle$}
 \end{displaymath}

The generalized roles are used by the function RoleRules(GRole,KI,Fresh) to generate the inference system. This step yields the rules shown in Table 7. Since the protocol is a one way authentication, the intruder try only to convince a principal playing a role B that it is a principal A. Let IS be the inference system and KI the intruder initial knowledge,according to the B 's generalized role the constraint set is:


  Table 7:   The Deductive Proof System Associated with the Corrected Version of Woo and Lam Protocol

\begin{table*}
\mbox{
 \begin{tabular}
{p{\textwidth}}
 \rule{\textwidth}{0.5mm}...
 ...r}
 
 } \\  \end{center} \rule{\textwidth}{0.5mm}\\  \end{tabular}}
\end{table*}


\begin{displaymath}
\left \{
 \begin{array}
{lcl}
 KI & \models_{IS} & A \\  KI\...
 ..._b\}& \models_{IS} &\{A, N_b \}_{k_{bs}}
 \end{array} \right.
 \end{displaymath}

The resolution step yields the two following attacks:


next up previous
Next: Conclusion Up: A New Algorithm for Previous: Algorithm