« Planarity, Exclusivity, and Unambiguity
February 27, 2019, 11:00 AM - 12:00 PM
Location:
Conference Room 301
Rutgers University
CoRE Building
96 Frelinghuysen Road
Piscataway, NJ 08854
Eric Allender, Rutgers University
We provide new upper bounds on the complexity of the s-t-connectivity problem in planar graphs, thereby providing additional evidence that this problem is not complete for NL. This also yields a new upper bound on the complexity of computing edit distance. Building on these techniques, we provide new upper bounds on the complexity of several other computational problems on planar graphs. All of these problems are shown to solvable in logarithmic time on a concurrent-read exclusive-write (CREW) PRAM. The new upper bounds are provided by making use of a known characterization of CREW algorithms in terms of “unambiguous” AC1 circuits. This seems to be the first occasion where this characterization has been used in order to provide new upper bounds on natural problems.