ADMM for Multiaffine Constrained Optimization

June 11, 2018, 1:40 PM - 2:10 PM



Rutgers University

CoRE Building

96 Frelinghuysen Road

Piscataway, NJ 08854

Click here for map.

Don Goldfarb, Columbia University

We propose a significant expansion of the scope of ADMM. Specifically, we show that ADMM, when employed to solve problems with multiaffine constraints that satisfy certain easily verifiable assumptions, converges to the set of constrained stationary points if the penalty parameter in the augmented Lagrangian is sufficiently large. Our analysis applies under assumptions that we have endeavored to make as weak as possible. It applies to problems that involve nonconvex and/or nonsmooth objective terms, in addition to the multiaffine constraints that can involve multiple (three or more) blocks of variables. To illustrate the applicability of our results, we describe examples including nonnegative matrix factorization, sparse learning, risk parity portfolio selection, nonconvex formulations of convex problems, and neural network training. In each case, our ADMM approach encounters only subproblems that have closed-form solutions.

This is joint work with Wenbo Gao and Frank E. Curtis.



Slides    Video